精英家教网 > 初中数学 > 题目详情

【题目】二次函数y=ax2+bx+c(abc是常数,a≠0)的自变量x与函数值y的部分对应值如下表:

x

-2

-1

0

1

2

y=ax2+bx+c

t

m

-2

-2

n

根据以上列表,回答下列问题:

1)直接写出c的值和该二次函数图象的对称轴;

2)写出关于x的一元二次方程ax2+bx+c=t的根;

3)若m=-1,求此二次函数的解析式.

【答案】1c=-2,对称轴为直线;(2-2,3是关于x的一元二次方程ax2+bx+c=t的根;(3

【解析】

(1)根据表格中对应值可知对称轴的值和抛物线与y轴的交点,即可求得c的值;

(2)根据二次函数的对称性即可求得;

(3)根据待定系数法求得即可.

1c=-2,对称轴为直线.

2)由对称性可知,-2,3是关于x的一元二次方程ax2+bx+c=t的根.

3 由题意知,二次函数的图象经过点(-1-1),(0-2),(1-2.

解得

二次函数的解析式为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了测量一个铁球的直径,将该铁球放入工件槽内,测得的有关数据如图所示(单位:cm),则该铁球的直径为(

A.12 cmB.10 cmC.8 cmD.6 cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtACB中,∠C=90°AC=3BC=4OBC的中点,到点O的距离等于BC的所有点组成的图形记为G,图形GAB交于点D

1)补全图形并求线段AD的长;

2)点E是线段AC上的一点,当点E在什么位置时,直线ED 图形G有且只有一个交点?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD中,∠B60°AB3cm,过点A作∠EAF60°,分别交DCBC的延长线于点EF,连接EF

1)如图1,当CECF时,判断△AEF的形状,并说明理由;

2)若△AEF是直角三角形,求CECF的长度;

3)当CECF的长度发生变化时,△CEF的面积是否会发生变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某公司要建一个矩形的产品展示台,展示台的一边靠找为9m的宣传版(这条边不能超出宣传版),另三边用总长为40m的红布粘贴在展示台边上.设垂直于宣传版的一边长为

1)当展示台的面积为128m2时,求的值;

2)设展示台的面积为,求的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是直径AB上的一点,AB=6CPAB交半圆于点C,以BC为直角边构造等腰RtBCD,∠BCD=90°,连接OD

小明根据学习函数的经验,对线段APBCOD的长度之间的关系进行了探究.

下面是小明的探究过程,请补充完整:

1)对于点PAB上的不同位置,画图、测量,得到了线段APBCOD的长度的几组值,如下表:

位置1

位置2

位置3

位置4

位置5

位置6

位置

AP

0.00

1.00

2.00

3.00

4.00

5.00

BC

6.00

5.48

4.90

4.24

3.46

2.45

OD

6.71

7.24

7.07

6.71

6.16

5.33

APBCOD的长度这三个量中,确定________的长度是自变量,________的长度和________的长度都是这个自变量的函数;

2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;

3)结合函数图象,解决问题:当OD=2BC时,线段AP的长度约为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=﹣x2+m1x+m的对称轴为x,请你解答下列问题:

1m   ,抛物线与x轴的交点为   

2x取什么值时,y的值随x的增大而减小?

3x取什么值时,y0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD的外接圆为⊙OAD是⊙O的直径,过点B作⊙O的切线,交DA的延长线于点E,连接BD,且∠E=∠DBC

1)求证:DB平分∠ADC

2)若CD9tanABE,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).

(1)求反比例函数的解析式;

(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;

(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.

查看答案和解析>>

同步练习册答案