精英家教网 > 初中数学 > 题目详情

【题目】已知AB为⊙O的直径,CD为⊙O的弦,CD∥AB,过点B的切线与射线AD交于点M,连接AC,BD.

(1)如图l,求证:AC=BD;
(2)如图2,延长AC、BD交于点F,作直径DE,连接AE、CE,CE与AB交于点N,求证:∠AFB=2∠AEN;
(3)如图3,在(2)的条件下,过点M作MQ⊥AF于点Q,若MQ:QC=3:2,NE=2,求QF的长.

【答案】
(1)证明:连接OC,OD,

∵CD∥AB,

∴∠DAB=∠ADC,

∵∠DOB=2∠DAB,∠COA=2∠CDA,

∴∠COA=∠DOB,

∴AC=BD;


(2)连接OC,

∵∠COA=∠DOB,OA=OB=OC=OD,

∴∠CAB=∠DBA,

∴△FBA是等腰三角形,

∵DE是⊙O的直径,

∴∠ECD=90°,

∵CD∥AB,

∴∠ANC=90°,

∴AB⊥CE,

∴AC=AE,

∴∠CAN=∠EAN=∠ABF,∠ACE=∠AEN,

∵∠FAB+∠FBA+∠F=180°,∠CAE+∠AEC+∠ACE=180°,

∴∠F=∠ACE+∠AEC,

∴∠AFB=2∠AEN;


(3)解:连接BC交AD于P,

∵AC=BD,

=

∴∠PAB=∠PBA,

∴PA=PB,∠PBM=∠PMB,

∴PB=PM,

∴P为AM的中点,

∵MQ⊥AF,BC⊥AF,

∴BC∥MQ,

=

∴AC=CQ,

=

=

∴tan∠MAQ=

∴tan∠F=

设DF=3k,AD=4k,由勾股定理得,AF=5k=BF,

∴BD=2k,

∴tan∠ABD=2,

∴DE为直径,

∴∠EAD=90=∠BDM,

∴AE∥BD,

∴∠EAN=∠ABD,

∴tan∠EAN=2,

∵NE=2,

∴AN=1,CN=2,

∴BN=4,AE=BD=

∴DF= ,AC=BD= =CQ,

∴QF=


【解析】(1)由平行线的内错角相等性质、圆周角定理可推出AC=BD;(2)由于∠AEN是圆周角,因此2∠AEN可转化为圆心角∠COA,问题转化为证∠COA=∠AFB,两个角都是等腰三角形的顶角,转化为证底角相等,即∠CAN=∠EAN=∠ABF,由垂径定理推论易证出结论;(3)利用圆周角定理的推论可推出tan∠MAQ= ,进而推出tan∠F= ,设出参数,求出AC,进而求出AQ,用AF减去AQ可求出QF

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】6分)如图,菱形ABCD的对角线ACBD相交于点O,分别延长OAOC到点EF,使AE=CF,依次连接BFDE各点.

1)求证:△BAE≌△BCF

2)若∠ABC=50°,则当∠EBA= °时,四边形BFDE是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为了解学生的课外阅读情况,王老师随机抽查部分学生,并对其暑假期间的课外阅读量进行统计分析,绘制成如图所示但不完整的统计图.已知抽查的学生在暑假期间阅读量为2本的人数占抽查总人数的20%,根据所给出信息,解答下列问题:

(1)求被抽查学生人数并直接写出被抽查学生课外阅读量的中位数;
(2)将条形统计图补充完整;
(3)若规定:假期阅读3本及3本以上课外书者为完成假期作业,据此估计该校1500名学生中,完成假期作业的有多少名学生?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明和同桌小聪在课后复习时,对课本目标与评定中的一道思考题,进行了认真的探索。

(思考题)如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B将向外移动多少米?

1)请你将小明对思考题的解答补充完整:

解:设点B将向外移动x米,即BB1=x

B1C=x+0.7A1C=AC﹣AA1=

A1B1=2.5,在Rt△A1B1C中,由得方程

解方程得x1= x2=

B将向外移动 米。

2)解完思考题后,小聪提出了如下两个问题:

(问题一)在思考题中,将下滑0.4改为下滑0.9,那么该题的答案会是0.9米吗?为什么?

(问题二)在思考题中,梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?为什么?

请你解答小聪提出的这两个问题。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A=∠BAE=BE,点DAC边上,∠1=∠2AEBD相交于点O

1)求证:AECBED

2)若∠1=42°,求BDE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC的面积为16BC=8.现将ABC沿直线BC向右平移a个单位到DEF的位置.

1)当ABC所扫过的面积为32时,求a的值;

2)连接AEAD,当AB=5a=5时,试判断ADE的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市对今年元旦期间销售ABC三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:

1)该超市元旦期间共销售   个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是   度;

2)补全条形统计图;

3)如果该超市的另一分店在元旦期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

1|3|+(﹣12016×(π3.140﹣(2+23

2)利用乘法公式计算:201822017×2019

3)已知2a=34b=58c=7,求8a+c2b的值.

4)已知x25x=14,求(x1)(2x1)﹣(x+12+1的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,正比例函数y=ax的图象与反比例函数y= 的图象交于点C(3,1)

(1)试确定上述比例函数和反比例函数的表达式;
(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?
(3)点D(m,n)是反比例函数图象上的一动点,其中0<m<3,过点C作直线AC⊥x轴于点A,交OD的延长线于点B;若点D是OB的中点,DE⊥x轴于点E,交OC于点F,试求四边形DFCB的面积.

查看答案和解析>>

同步练习册答案