【题目】如图,抛物线的顶点D的坐标为(﹣1,4),抛物线与x轴相交于A.B两点(A在B的左侧),与y轴交于点C(0,3).
(1)求抛物线的表达式;
(2)如图1,已知点E(0,﹣3),在抛物线的对称轴上是否存在一点F,使得△CEF的周长最小,如果存在,求出点F的坐标;如果不存在,请说明理由;
(3)如图2,连接AD,若点P是线段OC上的一动点,过点P作线段AD的垂线,在第二象限分别与抛物线、线段AD相交于点M、N,当MN最大时,求△POM的面积.
【答案】(1)y=﹣x2﹣2x+3;(2) 存在, F(﹣1,0),理由见解析;(3)2
【解析】
(1)根据顶点式可求得抛物线的表达式;
(2) 如图 1,作 C关于对称轴的对称点 C′,连接EC′交对称轴于 F,根据轴对称的最短路径问题, CF+EF的值最小,则△CEF的周长最小;
(3)如图2,先利用待定系数法求AD的解析式为: y=2x+6,设M(m,﹣m2﹣2m+3),则G(m,2m+6),(﹣3≤m≤﹣1),证明△MNG∽△AHD,列比例式可得MN的表达式,根据配方法可得当m=-2时,MN有最大值,证明△MCP∽△DHA,同理得PC的长,从而得OP的长,根据三角形的面积公式可得结论,并将m=-2代入计算即可
(1)设抛物线的表达式为:y=a(x+1)2+4,
把x=0,y=3代入得:3=a(0+1)2+4,解得:a=﹣1
∴抛物线的表达式为y=﹣(x+1)2+4=﹣x2﹣2x+3;
(2)存在.如图 1,作 C关于对称轴的对称点 C′,连接EC′交对称轴于 F,此时 CF+EF的值最小,则△CEF的周长最小.
∵C(0,3),
∴C′(﹣2,3),易得C′E的解析式为:y=﹣3x﹣3,
当x=﹣1时,y=﹣3×(﹣1)﹣3=0,
∴F(﹣1,0)
(3)如图2,∵A(﹣3,0),D(﹣1,4),
易得AD的解析式为:y=2x+6,
过点D作DH⊥x轴于H,过点M作MG⊥x轴交AD于G,
AH=﹣1﹣(﹣3)=2,DH=4,∴AD= ,
设M(m,﹣m2﹣2m+3),则G(m,2m+6),(﹣3≤m≤﹣1),
∴MG=(﹣m2﹣2m+3)﹣(2m+6)=﹣m2﹣4m﹣3,
由题易知△MNG∽△AHD,
∴
即
∵
∴当m=﹣2时,MN有最大值;
此时M(﹣2,3),又∵C(0,3),连接MC
∴MC⊥y轴
∵∠CPM=∠HAD,∠MCP=∠DHA=90°,
∴△MCP∽△DHA,
∴
即
∴PC=1
∴OP=OC﹣PG=3﹣1=2,
∴S△POM= =2,
科目:初中数学 来源: 题型:
【题目】 如图,在Rt△ABC中,∠C=90°,点O在边BC上,以点O为圆心,OB为半径的圆经过点A,过点A作直线AD,使∠CAD=2∠B.
(1)判断直线AD与⊙O的位置关系,并说明理由;
(2)若OB=4,∠CAD=60°,请直接写出图中弦AB与围成的阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 如图1,已知水龙头喷水的初始速度v0可以分解为横向初始速度vx和纵向初始速度vy,θ是水龙头的仰角,且v02=vx2+vy2.图2是一个建在斜坡上的花圃场地的截面示意图,水龙头的喷射点A在山坡的坡顶上(喷射点离地面高度忽略不计),坡顶的铅直高度OA为15米,山坡的坡比为.离开水龙头后的水(看成点)获得初始速度v0米/秒后的运动路径可以看作是抛物线,点M是运动过程中的某一位置.忽略空气阻力,实验表明:M与A的高度之差d(米)与喷出时间t(秒)的关系为d=vyt-5t2;M与A的水平距离为vxt米.已知该水流的初始速度v0为15米/秒,水龙头的仰角θ为53°.
(1)求水流的横向初始速度vx和纵向初始速度vy;
(2)用含t的代数式表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围);
(3)水流在山坡上的落点C离喷射点A的水平距离是多少米?若要使水流恰好喷射到坡脚B处的小树,在相同仰角下,则需要把喷射点A沿坡面AB方向移动多少米?(参考数据:sin53°≈,cos53°≈,tan53°≈)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在8×5的正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点均在小正方形的顶点上.
(1)在图1中画出△ABD(点D在小正方形的顶点上),使△ABD的周长等于△ABC的周长,且四边形ACBD是中心对称图形;
(2)在图2中找一点E(点E在小正方形的顶点上),使tan∠AEB=2(AE<EB),且四边形ACEB的对边不平行,并直接写出图2中四边形ACEB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A(0,4),B(3,4),P 为线段 OA 上一动点,过 O,P,B 三点的圆交 x 轴正半轴于点 C,连结 AB, PC,BC,设 OP=m.
(1)求证:当 P 与 A 重合时,四边形 POCB 是矩形.
(2)连结 PB,求 tan∠BPC 的值.
(3)记该圆的圆心为 M,连结 OM,BM,当四边形 POMB 中有一组对边平行时,求所有满足条件的 m 的值.
(4)作点 O 关于 PC 的对称点O ,在点 P 的整个运动过程中,当点O 落在△APB 的内部 (含边界)时,请写出 m 的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“2018西安国际马拉松”于2018年10月20日在陕西西安举行,该赛事共有三项:.“马拉松”、.“半程马拉松”、.“迷你马拉松”小明和小刚有幸参与了该项赛事的志愿者服务工作,组委会随机将志愿者分配到三个项目组.
(1)小明被分配到“迷你马拉松”项目组的概率为________.
(2)利用列表或树状图求小明和小刚被分配到不同项目组的概率________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小峰和小轩用两枚质地均匀的骰子做游戏,规则如下:每人随机掷两枚骰子一次(若掷出的两枚骰子摞在一起,则重掷),点数和大的获胜;点数和相同为平局.
依据上述规则,解答下列问题:
(1)随机掷两枚骰子一次,用列表法或树状图法求点数和为10的概率;
(2)小峰先随机掷两枚骰子一次,点数和是10,求小轩随机掷两枚骰子一次,胜小峰的概率.(骰子:六个面分别有1、2、3、4、5、6个小圆点的立方块.点数和:两枚骰子朝上的点数之和.)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲口袋中装有两个相同的小球,它们分别写有1和2;乙口袋中装有三个相同的小球,它们分别写有3、4和5;丙口袋中装有两个相同的小球,它们分别写有6和7.从这3个口袋中各随机地取出1个小球.
(1)取出的3个小球上恰好有两个偶数的概率是多少?
(2)取出的3个小球上全是奇数的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于以AB为直径的⊙O,过点A作⊙O的切线,与BC的延长线相交于点D,在CB上截取CE=CD,连接AE并延长,交⊙O于点F,连接CF.
(1)求证:AC=CF;
(2)若AB=4,sinB,求EF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com