精英家教网 > 初中数学 > 题目详情
(2013•南宁)如图,在菱形ABCD中,AC为对角线,点E、F分别是边BC、AD的中点.
(1)求证:△ABE≌△CDF;
(2)若∠B=60°,AB=4,求线段AE的长.
分析:(1)首先根据菱形的性质,得到AB=BC=AD=CD,∠B=∠D,结合点E、F分别是边BC、AD的中点,即可证明出△ABE≌△CDF;
(2)首先证明出△ABC是等边三角形,结合题干条件在Rt△AEB中,∠B=60°,AB=4,即可求出AE的长.
解答:解:(1)∵四边形ABCD是菱形,
∴AB=BC=AD=CD,∠B=∠D,
∵点E、F分别是边BC、AD的中点,
∴BE=DF,
在△ABE和△CDF中,
AB=CD
∠B=∠D
BE=DF

∴△ABE≌△CDF(SAS);

(2)∵∠B=60°,
∴△ABC是等边三角形,
∵点E是边BC的中点,
∴AE⊥BC,
在Rt△AEB中,∠B=60°,AB=4,
sin60°=
AE
AB
=
AE
4

解得AE=2
3
点评:本题主要考查菱形的性质等知识点,解答本题的关键是熟练掌握菱形的性质、全等三角形的证明以及等边三角形的性质,此题难度不大,是一道比较好的中考试题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•南宁)如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,-1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,-2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.
(1)求此抛物线的解析式;
(2)求证:AO=AM;
(3)探究:
①当k=0时,直线y=kx与x轴重合,求出此时
1
AM
+
1
BN
的值;
②试说明无论k取何值,
1
AM
+
1
BN
的值都等于同一个常数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南宁)如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=
1
2
∠BOD,则⊙O的半径为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南宁)如图,圆锥形的烟囱底面半径为15cm,母线长为20cm,制作这样一个烟囱帽所需要的铁皮面积至少是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南宁)如图,在△ABC中,∠BAC=90°,AB=AC,AB是⊙O的直径,⊙O交BC于点D,DE⊥AC于点E,BE交⊙O于点F,连接AF,AF的延长线交DE于点P.
(1)求证:DE是⊙O的切线;
(2)求tan∠ABE的值;
(3)若OA=2,求线段AP的长.

查看答案和解析>>

同步练习册答案