A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 首先根据二次函数图象开口方向可得a>0,根据图象与y轴交点可得c<0,再根据二次函数的对称轴,结合图象与x轴的交点可得对称轴为x=1,根据对称轴公式结合a的取值可判定出b<0进而解答即可.
解答 解:根据图象可得:抛物线开口向上,则a>0.抛物线与y交与负半轴,则c<0,对称轴和x轴的正半轴相交,所以a,b异号,即b<0,
故①abc>0正确;
对称轴:x=-$\frac{b}{2a}$>0,
∵它与x轴的两个交点分别为(-1,0),(3,0),
∴对称轴是x=1,
∴-$\frac{b}{2a}$=1,
∴b+2a=0,
故②2a+b=0正确;
把x=2代入y=ax2+bx+c=4a+2b+c,由图象可得4a+2b+c<0,
故③4a+2b+c<0正确;
∵抛物线的对称轴为直线x=1,∴当x=1时,y的最小值为a+b+c,∴对于任意x均有ax2+bx≥a+b,
即ax2-a+bx-b>0故④正确;
故选D.
点评 此题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com