精英家教网 > 初中数学 > 题目详情
精英家教网如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,BD=6,求AD的长.
分析:利用等腰三角形的性质和直径所对的圆周角是90°,得到△ABC是含30度的直角三角形,然后进行计算.
解答:解:如图,
∵BD是直径,
∴∠BAD=90°;
又∵AB=AC,
∴∠C=∠ABC,
∵∠BAC=120°,
∴∠C=(180°-∠BAC)÷2=30°,
由圆周角定理可知∠D=∠C=30°,
∵BD=6,
∴AD=BD×cos∠D=6×
3
2
=3
3
点评:本题考查了圆周角定理及解直角三角形的知识,熟悉等腰三角形的性质和圆周角定理及其推论.对含30度的直角三角形的三边的关系要记住(1:
3
:2).
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4.BD为⊙O的直径,则BD=
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,△ABC内接于⊙O,AB为⊙O的直径,点D在AB的延长线上,∠A=∠D=30°.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)证明:△AOC≌△DBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若AO=5,BC=8,∠ADB=90°,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,△ABC内接于⊙O,∠A=30°,若BC=4cm,则⊙O的直径为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC内接于⊙O,AD⊥BC于点D,求证:∠BAD=∠CAO.

查看答案和解析>>

同步练习册答案