精英家教网 > 初中数学 > 题目详情
函数y=2x2中,自变量x的取值范围是______,函数值y的取值范围是______.
函数y=2x2中,自变量x的取值范围是全体实数,函数值y的取值范围是y≥0,
故答案为:全体实数,y≥0.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=2x2+bx+1(b为常数),当b取不同的值时,其图象构成一个“抛物线系”,图中的实线型抛物线分别是b取三个不同的值时二次函数的图象,它们的顶点在一条抛物线上(图中虚线型抛物线),这条抛物线的解析式是(  )
A.y=-2x2+1B.y=-
1
2
x2+1
C.y=-4x2+1D.y=-
1
4
x2+1

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=-x2+x-2交x轴于A,B两点(点A在点B的左侧),交y轴于点C,分别过点B,C作y轴,x轴的平行线,两平行线交于点D,将△BDC绕点C逆时针旋转,使点D旋转到y轴上得到△FEC,连接BF.
(1)求点B,C所在直线的函数解析式;
(2)求△BCF的面积;
(3)在线段BC上是否存在点P,使得以点P,A,B为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B,C重合).
第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;
第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;
依次操作下去…
(1)图2中的△EFD是经过两次操作后得到的,其形状为   ,求此时线段EF的长;
(2)若经过三次操作可得到四边形EFGH.
①请判断四边形EFGH的形状为   ,此时AE与BF的数量关系是   
②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围;
(3)若经过多次操作可得到首尾顺次相接的多边形,其最大边数是多少?它可能是正多边形吗?如果是,请直接写出其边长;如果不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线轴交于点A,B,与y轴交于点C,其中点B的坐标为.
(1)求抛物线对应的函数表达式;]
(2)将(1)中的抛物线沿对称轴向上平移,使其顶点M落在线段BC上,记该抛物线为G,求抛物线G所对应的函数表达式;
(3)将线段BC平移得到线段(B的对应点为,C的对应点为),使其经过(2)中所得抛物线G的顶点M,且与抛物线G另有一个交点N,求点到直线的距离的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下面给出了6个函数:
①y=3x2-1;②y=-x2-3x;③y=
x2+5
;④y=x(x2+x+1);⑤y=
1
x2+1
;⑥y=
x3+x2+3x
x

其中是二次函数的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

关于抛物线y=x2-2x,下列说法正确的是(  )
A.顶点是坐标原点B.对称轴是直线x=2
C.有最高点D.经过坐标原点

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知函数y=
(x-1)2-1(x≤3)
(x-5)2-1(x>3)
,若使y=k成立的x值恰好有三个,则k的值为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将二次函数y=-2x2+4x-1,化为y=a(x-h)2+k的形式,结果为______,该函数图象不经过第______象限.

查看答案和解析>>

同步练习册答案