精英家教网 > 初中数学 > 题目详情
已知:如图,△ABC中,AB=AC,BE∥AC,∠BDE=100°,∠BAD=70°,则∠E=
50°
50°
分析:利用三角形的外角和定理求得∠ABC的度数,然后根据等腰三角形的性质,以及三角形的内角和定理求得∠BAC的度数,则∠CAD的度数即可得到,然后根据平行线的性质求得∠E的度数.
解答:解:∵∠BDE=∠ABC+∠BAD,
∴∠ABC=∠BDE-∠BAD=100°-70°=30°,
∵AB=AC,
∴∠ABC=∠C=30°,
∴∠BAC=180°-∠ABC-∠C=120°,
∴∠CAD=∠BAC-∠BAD=120°-70°=50°,
∵BE∥AC,
∴∠E=∠CAD=50°.
故答案是:50°.
点评:本题是三角形的内角和、外角和以及等腰三角形的性质,平行线的性质的综合应用,正确求得∠CAD的度数是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案