分析 过O作OC⊥AB于C,根据垂径定理得到AC=BC;而∠AOB=120°,OA=OB,根据等腰三角形的性质得∠A=30°;在Rt△OAC中,OA=2,∠A=30°,根据含30度的直角三角形三边的关系得到OC和AC,则可求出AB,最后根据扇形的面积公式和三角形的面积公式利用S阴影部分=S扇形OAB-S△OAB进行计算即可.
解答 解:过O作OC⊥AB于C,如图,
∴AC=BC,
而∠AOB=120°,OA=OB,
∴∠A=$\frac{1}{2}$(180°-120°)=30°,
在Rt△OAC中,OA=2,∠A=30°,
∴OC=1,AC=$\sqrt{3}$,
∴AB=2$\sqrt{3}$,
∴S阴影部分=S扇形OAB-S△OAB
=$\frac{120•π•{2}^{2}}{360}$-$\frac{1}{2}$•1•2$\sqrt{3}$
=$\frac{4π}{3}$-$\sqrt{3}$.
故答案为$\frac{4π}{3}$-$\sqrt{3}$.
点评 本题考查了扇形的面积公式:S=$\frac{nπ{R}^{2}}{360}$;也考查了垂径定理和等腰三角形的性质以及含30度的直角三角形三边的关系.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | (2,0) | B. | (3,0) | C. | (4,0) | D. | (5,0) |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | ①②④ | B. | ①③④ | C. | ②③④ | D. | ①②③ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com