精英家教网 > 初中数学 > 题目详情
有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30°.
(1)请直接写出AF的长;
(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求△AFK的面积(保留根号).
精英家教网
分析:(1)根据旋转的性质可知△AFM≌△ADB,则AF=AD=BD•cos∠ADB=8×
3
2
=4
3
cm;
(2)当△AFK为等腰三角形时,由于AM<AF,那么A不能是等腰△AFK的顶点,则分两种情况:①K为顶点,即AK=FK时;②F为顶点,即AF=FK.针对每一种情况,利用三角形的面积公式,可分别求出△AFK的面积.
解答:精英家教网解:(1)AF=4
3
cm


(2)△AFK为等腰三角形时,分两种情况:
①当AK=FK时,如图.过点K作KN⊥AF于N,则KN⊥AF,AN=NF=
1
2
AF=2cm.
在直角△NFK中,∠KNF=90°,∠F=30°,
∴KN=NF•tan∠F=2cm.精英家教网
∴△AFK的面积=
1
2
×AF×KN=4
3
cm2

②当AF=FK时,如图.过点K作KP⊥AF于P.
在直角△PFK中,∠KPF=90°,∠F=30°,
∴KP=
1
2
KF=2
3
cm.
∴△AFK的面积=
1
2
×AF×KP=12cm2
点评:本题考查旋转的性质,旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.注意(2)中需分情况讨论△AFK为等腰三角形时的不同分类,不要漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30度.
(1)试探究线段BD与线段MF的关系,并简要说明理由;
(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,请直接写出旋转角β的度数;
(3)若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离是多少?
精英家教网精英家教网精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得∠ADB=30°.

(1)试探究线段BD与线段MF的关系,并简要说明理由;
(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,请直接写出旋转角β的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

有两张完全重合的矩形纸片,小亮将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连结BD、MF,此时他测得BD=8cm,∠ADB=30°.

1.在图1中,请你判断直线FM和BD是否垂直?并证明你的结论;

2.小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,请直接写出旋转角β的度数;

3.若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离是多少.

 

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年北京门头沟中考二模数学试卷(解析版) 题型:解答题

有两张完全重合的矩形纸片,小亮将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连结BD、MF,此时他测得BD=8cm,∠ADB=30°.

1.在图1中,请你判断直线FM和BD是否垂直?并证明你的结论;

2.小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,请直接写出旋转角β的度数;

3.若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离是多少.

 

 

查看答案和解析>>

同步练习册答案