【题目】如图,,,给出下列结论:①;②;③;④≌,其中正确的是( )
A. ①③④;B. ②③④;C. ①②④D. ①②③
【答案】C
【解析】
根据E=∠F=90°,∠B=∠C,AE=AF利用AAS可以证得△AEB≌△AFC,进而证得△CAN≌△BAM,△CDM≌△BDN,从而作出判断.
解:∵∠E=∠F=90°,∠B=∠C,AE=AF,
∴△AEB≌△AFC(AAS),
∴BE=CF,∠EAB=∠FAC,
∴∠1+∠CAB=∠2+∠CAB,
∴∠1=∠2,故①②正确;
∵△AEB≌△AFC,
∴AC=AB
又∵∠CAB=∠CAB,∠B=∠C
∴△CAN≌△BAM,故④正确;
∵△CAN≌△BAM,
∴AM=AN,
又∵AC=AB
∴CM=BN,
又∵∠B=∠C,∠CDM=∠BDN,
∴△CDM≌△BDN,
∴CD=BD,
而DN与BD不一定相等,因而CD=DN不一定成立,故③错误.
故选:C.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,O 为坐标原点,P是反比例函数图象上任意一点,以P为圆心,PO为半径的圆与x轴交于点 A、与y轴交于点B,连接AB.
(1)求证:P为线段AB的中点;
(2)求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积. 某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路,完成解答过程.
(1)作AD⊥BC于D,设BD=x,用含x的代数式表示CD,则CD=________;
(2)请根据勾股定理,利用AD作为“桥梁”建立方程,并求出x的值;
(3)利用勾股定理求出AD的长,再计算三角形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们规定x的一元一次方程ax=b的解为b﹣a,则称该方程是“差解方程”,例如:3x=4.5的解为4.5﹣3=1.5,则该方程3x=4.5就是“差解方程”,请根据上述规定解答下列问题:
(1)已知关于x的一元一次方程4x=m是“差解方程”,则m=______.
(2)已知关于x的一元一次方程4x=ab+a是“差解方程”,它的解为a,则a+b=_____.
(3)已知关于x的一元一次方程4x=mn+m和﹣2x=mn+n都是“差解方程”,求代数式﹣3(m+11)+4n+2[(mn+m)2﹣m]﹣[(mn+n)2﹣2n]的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图,在矩形ABCD中.点O在边AB上,∠AOC=∠BOD.求证:AO=OB.
(2)如图,AB是的直径,PA与相切于点A,OP与相交于点C,连接CB,∠OPA=40°,求∠ABC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】商场销售甲、乙两种商品,它们的进价和售价如下表所示,
进价(元) | 售价(元) | |
甲 | 15 | 20 |
乙 | 35 | 43 |
(1)若该商场购进甲、乙两种商品共 100 件,恰好用去 2700 元,求购进甲、乙两种商品各多少件?
(2)该商场为使销售甲、乙两种商品共 100 件的总利润(利润=售价-进价)不少于750 元,且不超过 760 元,请你帮助该商场设计相应的进货方案.
(3)若商场销售甲、乙两种商品的总利润(利润=售价-进价)是 103 元,求销售甲、 乙两种商品多少件?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示是一个正方体的表面展开图,请回答下列问题:
(1)与面B、面C相对的面分别是 和 ;
(2)若A=a3+a2b+3,B=﹣a2b+a3,C=a3﹣1,D=﹣(a2b+15),且相对两个面所表示的代数式的和都相等,求E、F代表的代数式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,图2中,正方形ABCD的边长为6,点P从点B出发沿边BC—CD以每秒2个单位长的速度向点D匀速运动,以BP为边作等边三角形BPQ,使点Q在正方形ABCD内或边上,当点Q恰好运动到AD边上时,点P停止运动。设运动时间为t秒(t≥0)。
(1)当t=2时,点Q到BC的距离=_____;
(2)当点P在BC边上运动时,求CQ的最小值及此时t的值;
(3)若点Q在AD边上时,如图2,求出t的值;
(4)直接写出点Q运动路线的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣x+3与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A、B两点,与x轴的另一个交点为C.
(1)求抛物线的解析式;
(2)点P是第一象限抛物线上的点,连接OP交直线AB于点Q.设点P的横坐标为m,PQ与OQ的比值为y,求y与m的关系式,并求出PQ与OQ的比值的最大值;
(3)点D是抛物线对称轴上的一动点,连接OD、CD,设△ODC外接圆的圆心为M,当sin∠ODC的值最大时,求点M的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com