【题目】∠1=∠2,∠3=∠B,FG⊥AB于G,猜想CD与AB的关系,并证明你的猜想.
【答案】垂直,证明见解析
【解析】试题分析:根据∠3=∠B得出ED∥BC,根据FG⊥AB得出∠AGF=90°,根据外角的性质得出∠AGF=∠B+∠2,结合∠ADC=∠1+∠3,∠1=∠2,∠3=∠B从而得出∠ADC=∠AGF=90°,从而得到垂直.
试题解析:猜想CD⊥AB.
理由如下: ∵∠3=∠B(已知),∴ED∥BC(同位角相等,两直线平行).
∵FG⊥AB(已知),∴∠AGF=90°(垂直定义).
∵∠AGF是△BFG的一个外角, ∴∠AGF=∠B+∠2(三角形的一个外角等于和它不相邻的两个内角的和).
∵∠ADC=∠1+∠3,而∠1=∠2,∠3=∠B, ∴∠ADC=∠AGF=90°(等量代换).
∴CD⊥AB(垂直定义).
科目:初中数学 来源: 题型:
【题目】某服装店经销一种品牌服装,平均每天可销售20件,每件赢利44元,经市场预测发现:在每件降价不超过10元的情况下,若每件降价1元,则每天可多销售5件,若该专卖店要使该品牌服装每天的赢利为1600元,则每件应降价_________元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与探究:如图,已知抛物线y=-x2+bx+c与一直线相交于A(-1,0),C (2,3)两点,与y轴交于点N,其顶点为D 。
(1)确定抛物线及直线AC的函数关系式;
(2)点M在直线x =3上,求使 MN+MD 的值最小时的M点坐标;
(3)若抛物线的对称轴与直线AC 相交于点B,E 为直线AC 上的任意一点,过点E 作EF∥BD 交抛物线于点F,以B、D、E、F 为顶点的四边形能否为平行四边形?若能,求点E 的坐标;若不能,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图①、②,解答下面各题:
(1)图①中,∠AOB=55°,点P在∠AOB内部,过点P作PE⊥OA,PF⊥OB,垂足分别为E、F,求∠EPF的度数。
(2)图②中,点P在∠AOB外部,过点P作PE⊥OA,PF⊥OB,垂足分别为E、F,那么∠P与∠O有什么关系?为什么?
(3)通过上面这两道题,你能说出如果一个角的两边分别垂直于另一个角的两边,则这两个角是什么关系?
(4)如果一个角的两边分别平行于另一个角的两边,则这两个角是什么关系?(请画图说明结果,不需要过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒.
(1)当t=3时,求l的解析式;
(2)若点M,N位于l的异侧,确定t的取值范围;
(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com