精英家教网 > 初中数学 > 题目详情

正三角形的内切圆的面积与外接圆的面积之比是


  1. A.
    1:5
  2. B.
    1:4
  3. C.
    1:3
  4. D.
    1:2
B
分析:首先根据题意作图,易得点O即是△ABC的外心,又是⊙O的内心,且外接圆的半径为OB,内接圆的半径为OD,AD⊥BC,然后由直角三角形的性质,得到OD=OB,继而求得答案.
解答:解:如图,△ABC为等边三角形,AD为角平分线,⊙O为△ABC的内切圆,连OB,如图,
∵△ABC为等边三角形,⊙O为△ABC的内切圆,
∴点O即是△ABC的外心,又是⊙O的内心,且外接圆的半径为OB,内接圆的半径为OD,AD⊥BC,
∴∠OBC=30°,
在Rt△OBD中,OD=OB,
∴正三角形的内切圆的面积与外接圆的面积之比是:πOD2:πOB2=1:4.
故选B.
点评:此题考查了三角形的内切圆与外接圆的性质以及等边三角形的性质.此题难度适中,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读材料并解答问题:
与正三角形各边都相切的圆叫做正三角形的内切圆,与正四边形各边都相切的圆叫做正四边形的内切圆,…,与正n边形各边都相切的圆叫做正n边形的内切圆,设正n(n≥3)边形的面积为S正n边形,其内切圆的半径为r,试探索正n边形的面积.(结果可用三角函数表示)
如图①,当n=3时,设AB切圆O于点C,连接OC,OA,OB,∴OC⊥AB,OA=OB,∴∠AOC=
1
2
AOB
,AB=2BC.
在Rt△AOC中,∵∠AOC=
1
2
360°
3
=60°
,OC=r,∴AC=r•tan60°,AB=2r•tan60°,∴S△OAB=
1
2
•r•2rtan60°=r2tan60°
,∴S正三角形=3S△OAB=3r2•tan60°.
(1)如图②,当n=4时,仿照(1)中的方法和过程可求得:S正四边形=
 

(2)如图③,当n=5时,仿照(1)中的方法和过程求S正五边形
(3)如图④,根据以上探索过程,请直接写出S正n边形=
 

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•江西)正三角形的内切圆的面积与外接圆的面积之比是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读材料并解答问题:
与正三角形各边都相切的圆叫做正三角形的内切圆,与正四边形各边都相切的圆叫做正四边形的内切圆,…,与正n边形各边都相切的圆叫做正n边形的内切圆,设正n(n≥3)边形的面积为S正n边形,其内切圆的半径为r,试探索正n边形的面积.(结果可用三角函数表示)
如图①,当n=3时,设AB切圆O于点C,连接OC,OA,OB,∴OC⊥AB,OA=OB,∴数学公式,AB=2BC.
在Rt△AOC中,∵数学公式,OC=r,∴AC=r•tan60°,AB=2r•tan60°,∴数学公式,∴S正三角形=3S△OAB=3r2•tan60°.
(1)如图②,当n=4时,仿照(1)中的方法和过程可求得:S正四边形=______;
(2)如图③,当n=5时,仿照(1)中的方法和过程求S正五边形
(3)如图④,根据以上探索过程,请直接写出S正n边形=______.

查看答案和解析>>

科目:初中数学 来源:2013年黑龙江省大庆市三十一中中考数学模拟试卷(六)(解析版) 题型:解答题

阅读材料并解答问题:
与正三角形各边都相切的圆叫做正三角形的内切圆,与正四边形各边都相切的圆叫做正四边形的内切圆,…,与正n边形各边都相切的圆叫做正n边形的内切圆,设正n(n≥3)边形的面积为S正n边形,其内切圆的半径为r,试探索正n边形的面积.(结果可用三角函数表示)
如图①,当n=3时,设AB切圆O于点C,连接OC,OA,OB,∴OC⊥AB,OA=OB,∴,AB=2BC.
在Rt△AOC中,∵,OC=r,∴AC=r•tan60°,AB=2r•tan60°,∴,∴S正三角形=3S△OAB=3r2•tan60°.
(1)如图②,当n=4时,仿照(1)中的方法和过程可求得:S正四边形=______;
(2)如图③,当n=5时,仿照(1)中的方法和过程求S正五边形
(3)如图④,根据以上探索过程,请直接写出S正n边形=______.

查看答案和解析>>

科目:初中数学 来源:2011年广东省汕头市金平区中考数学模拟试卷(解析版) 题型:解答题

阅读材料并解答问题:
与正三角形各边都相切的圆叫做正三角形的内切圆,与正四边形各边都相切的圆叫做正四边形的内切圆,…,与正n边形各边都相切的圆叫做正n边形的内切圆,设正n(n≥3)边形的面积为S正n边形,其内切圆的半径为r,试探索正n边形的面积.(结果可用三角函数表示)
如图①,当n=3时,设AB切圆O于点C,连接OC,OA,OB,∴OC⊥AB,OA=OB,∴,AB=2BC.
在Rt△AOC中,∵,OC=r,∴AC=r•tan60°,AB=2r•tan60°,∴,∴S正三角形=3S△OAB=3r2•tan60°.
(1)如图②,当n=4时,仿照(1)中的方法和过程可求得:S正四边形=______;
(2)如图③,当n=5时,仿照(1)中的方法和过程求S正五边形
(3)如图④,根据以上探索过程,请直接写出S正n边形=______.

查看答案和解析>>

同步练习册答案