【题目】如图,已知在平行四边形ABCD中,AE⊥BC交于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′,若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为( )
A.130°
B.150°
C.160°
D.170°
【答案】C
【解析】解:在ABCD中, ∵AD∥BC,
∴∠BA′D=180°﹣∠ADA′=180°﹣50°=130°,
∵∠ADC=60°,
∴∠ABC=∠ADC=60°,
在Rt△AEB中,∠BAE=90°﹣60°=30°,
由旋转得:∠BA′E′=∠BAE=30°,
∴∠DA′E′=130°+30°=160°;
故选C.
【考点精析】利用平行四边形的性质和旋转的性质对题目进行判断即可得到答案,需要熟知平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分;①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了.
科目:初中数学 来源: 题型:
【题目】如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=5,BC=3,则BD的长为( )
A. 1 B. C. D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A,B两点(点B在点A的右侧),与y轴的正半轴交于点C,顶点为D.若以BD为直径的⊙M经过点C.
(1)请直接写出C,D的坐标(用含a的代数式表示);
(2)求抛物线的函数表达式;
(3)⊙M上是否存在点E,使得∠EDB=∠CBD?若存在,请求出所满足的条件的E的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,如图所示,△AOB是边长为2的等边三角形,将△AOB绕着点B按顺时针方向旋转得到△DCB,使得点D落在x轴的正半轴上,连接OC、AD.
(1)求证:OC=AD;
(2)求OC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=x2+x﹣6与x轴两个交点分别是A、B(点A在点B的左侧).
(1)求A、B的坐标;
(2)利用函数图象,写出y<0时,x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=﹣2x2+bx+c的图象经过点A(0,4)和B(1,﹣2).
(1)求此抛物线的解析式;
(2)求此抛物线的对称轴和顶点坐标;
(3)设抛物线的顶点为C,试求△CAO的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“低碳环保,绿色出行”的概念得到广大群众的接受,越来越多的人喜欢选择骑自行车作为出行工具.小军和爸爸同时骑车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆.小军始终以同一速度骑行,两人骑行的路程为y(米)与时间x(分钟)的关系如图.请结合图象,解答下列问题:
(1)填空:a=________;b=________;m=________.
(2)若小军的速度是 120 米/分,求小军第二次与爸爸相遇时距图书馆的距离.
(3)在(2)的条件下,爸爸自第二次出发后,骑行一段时间后与小军相距100 米,此时 小军骑行的时间为________分钟.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】
(1)如图1,△ABC为等边三角形,现将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.
①求∠EAF的度数;
②DE与EF相等吗?请说明理由;
(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF,请直接写出探究结果:
①求∠EAF的度数;
②线段AE,ED,DB之间的数量关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com