精英家教网 > 初中数学 > 题目详情
21、如图,△ABC中,AB=AC,AM是BC边上的中线,点N在AM上,求证NB=NC.
分析:等腰三角形底边上的中线,角平分线,高三线合一,以及垂直平分线上的点到线段两个端点的距离相等,
解答:证明:∵AB=AC,AM是BC边上的中线,
∴AM⊥BC.…(2分)
∴AM垂直平分BC.
∵点N在AM上,
∴NB=NC.…(4分)
点评:本题考查等腰三角形的性质,三线合一和线段垂直平分线的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案