精英家教网 > 初中数学 > 题目详情
15.二元一次方程组$\left\{\begin{array}{l}{x+y=5}\\{\frac{a}{2}x+3y=13}\end{array}\right.$的解也是二元一次方程5x-3y=1的解,则a的值是(  )
A.4B.3C.2D.1

分析 由题意建立关于x,y的新的方程组,求得x,y的值,再代入$\frac{a}{2}$x+3y=13中,求得a的值即可.

解答 解:由题意得$\left\{\begin{array}{l}{x+y=5}\\{5x-3y=1}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$,
代入方程$\frac{a}{2}$x+3y=13,
解得a=4.
答:a的值是4.
故选:A.

点评 此题考查二元一次方程组的解,本题实质是解三元一次方程组,通过先求得x,y这两元后,再求第三元a的,即解方程组关键是消元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.已知x2+x-3=0,求代数式$\frac{{{x^2}-1}}{{{x^2}-2x+1}}•\frac{1}{x+1}+\frac{x+1}{x+2}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.阅读下面材料,再解方程:
解方程x2-|x|-6=0
解:当x≥0时,原方程化为x2-x-6=0,解得:x1=3,x2=-2(不合题意,舍去);
当x<0时,原方程化为x2+x-6=0,解得:x1=-3(不合题意,舍去),x2=2;
∴原方程的根是x1=3,x2=2.
(1)请参照例题解方程x2-|x-1|-3=0;
(2)拓展应用:已知实数m,n满足:m2-7m+2=0,n2-7n+2=0,求:$\frac{n}{m}$+$\frac{m}{n}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图1,在等腰Rt△ACB中,∠ACB=90°,AC=BC,在等腰Rt△DCE中,∠DCE=90°,CD=CE,点D、E分在边BC、AC上,连接AD、BE,点N是线段BE的中点,连接CN,CN与AD交于点G.
(1)若CN=8.5,CE=8,求S△BDE
(2)求证:CN⊥AD.
(3)把等腰Rt△DCE绕点C转至如图2的位置,点N是线段BE的中点,延长NC交AD于点H,请问(2)中的结论还成立吗?若成立,请给出证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.今年是猴年,在“猴年马月”和“猴头猴脑”这两个词语的八个汉字中,任选一个汉字是“猴”字的概率是(  )
A.$\frac{1}{8}$B.$\frac{3}{8}$C.$\frac{5}{8}$D.$\frac{7}{8}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,在以点O为圆心的半圆中,AB为直径,且AB=4,将该半圆折叠,使点A和点B落在点O处,折痕分别为EC和FD,则图中阴影部分面积为(  )
A.4$\sqrt{3}$-$\frac{π}{3}$B.4$\sqrt{3}$-$\frac{2π}{3}$C.2$\sqrt{3}$-$\frac{π}{3}$D.2$\sqrt{3}$-$\frac{2π}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知关于x,y的二元一次方程组$\left\{\begin{array}{l}{x+y=3m}\\{2x-3y=m+5}\end{array}\right.$.
(1)若方程组的解是正数,求m的取值范围.
(2)若方程组的解满足x-y不小于0,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.下列运算正确的是(  )
A.x3+x2=x5B.x3-x2=xC.x3•x-2=x-5D.x3÷x2=x

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,过正方形ABCD顶点B,C的⊙O与AD相切于点E,与CD相交于点F,连接EF.
(1)求证:EF平分∠BFD.
(2)若tan∠FBC=$\frac{3}{4}$,DF=$\sqrt{5}$,求EF的长.

查看答案和解析>>

同步练习册答案