精英家教网 > 初中数学 > 题目详情
精英家教网如图,在Rt△ABC中,∠C=90°,以AC为直径作圆O,交AB边于点D,过点O作OE∥AB,交BC边于点E.
(1)试判断ED与圆O位置关系,并给出证明;
(2)如果圆O的半径为
32
,ED=2
,求AB的长.
分析:(1)ED与圆O相切,证明相切只要证明∠ODE=90°即可;
(2)根据平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似可得到△COE∽△CAB,根据对应边成比例可求得AB的长.
解答:精英家教网解:(1)ED与圆O相切,证明如下:
连接OD,
∵OE∥AB,
∴∠COE=∠CAD、∠EOD=∠ODA,(2分)
∵∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
OD=OC
∠DOE=∠COE
OE=OE

∴△COE≌△DOE(SAS),
∴∠ODE=∠OCE=90°,
∴ED是圆O的切线.(6分)

(2)在Rt△ODE中,
∵OD=
3
2
,DE=2,
∴OE=
OD2+DE2
=
(
3
2
)
2
+22
=
5
2
.(9分)
∵OE∥AB,
∴△COE∽△CAB,
OC
AC
=
OE
AB

∴AB=5.(12分)
点评:此题考查学生对相似三角形的判定及切线的判定的理解及运用能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田质检)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,求点D到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,将三角板中一个30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC、BC相交于点E、F,且使DE始终与AB垂直.
(1)画出符合条件的图形.连接EF后,写出与△ABC一定相似的三角形;
(2)设AD=x,CF=y.求y与x之间函数解析式,并写出函数的定义域;
(3)如果△CEF与△DEF相似,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,BD⊥AC,sinA=
3
5
,则cos∠CBD的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案