精英家教网 > 初中数学 > 题目详情

在△ABC中,AB=AC,∠BAC=80°,P在△ABC中,∠PBC=10°,∠PCB=20°,则∠PAB的度数为


  1. A.
    50°
  2. B.
    60°
  3. C.
    70°
  4. D.
    65°
B
分析:要求∠PAB,题中已知没有能直接求出的条件,故可作P关于AC的对称点P′,连接AP′、P'C、PP',得出A、B、C、P'四点共圆,从而求得∠PAB的度数.
解答:解:如图,作P关于AC的对称点P′,连接AP′、P′C、PP′,
则P′C=PC,ACP′=∠ACP.
∵AB=AC,∠BAC=80°,
∴∠ABC=∠ACB=50°,
又∵∠PBC=10°,∠PCB=20°,
∴∠BPC=150°,∠ACP=30°,∠ACP′=30°,
∴∠PCP′=60°,
∴△PCP′是等边三角形,
∴PP′=PC,∠P′AC=∠PAC,∠P′PC=60°,
∴∠BPP′=360°-150°-60°=150°,
∴∠BPP′=∠BPC,
∴△PBP′≌△PBC,
∴∠PBP′=∠PBC=10°,
∴∠P′BC=20°,∠ABP′=30° 又∠ACP′=30°,
∴∠ABP′=∠ACP′,
∴A、B、C、P′四点共圆,
∴∠PAC=∠P′AC=∠P′BC=20°,
∴∠PAB=60°.
故选B.
点评:本题考查了等腰三角形的性质,等边三角形的性质及全等三角形的判定,难度较大.辅助线的作出是解答本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•宁德质检)如图,在△ABC中,AB=AC=6,点0为AC的中点,OE⊥AB于点E,OE=
32
,以点0为圆心,OA为半径的圆交AB于点F.
(1)求AF的长;
(2)连结FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•襄阳)如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.
求证:AM=AN.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=AC,把△ABC绕着点A旋转至△AB1C1的位置,AB1交BC于点D,B1C1交AC于点E.求证:AD=AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•滨湖区一模)如图,在△ABC中,AB是⊙O的直径,∠B=60°,∠C=70°,则∠BOD的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•吉林)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作?ABDE,连接AD,EC.
(1)求证:△ADC≌△ECD;
(2)若BD=CD,求证:四边形ADCE是矩形.

查看答案和解析>>

同步练习册答案