精英家教网 > 初中数学 > 题目详情
如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为(  )
A.18πcmB.16πcmC.20πcmD.24πcm

如图,连接OA.

∵PA是⊙O的切线,
∴OA⊥AP,即∠OAP=90°.
又∵PO=26cm,PA=24cm,
∴根据勾股定理,得
OA=
PO2-PA2
=
262-242
=10cm,
∴⊙O的周长为:2π•OA=2π×10=20π(cm).
故选C.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图:△ABC中,∠C=90°,AC=8cm,AB=10cm,点P由点C出发以每秒2cm的速度沿线段CA向点A运动(不运动到A点),⊙O的圆心在BP上,且⊙O分别与AB、AC相切,当点P运动2秒钟时,⊙O的半径是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB、AC为⊙O的切线,B、C是切点,延长OB到D,使BD=OB,连接AD,如果∠DAC=78°,那么∠ADO等于(  )
A.70°B.64°C.62°D.51°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,AB为⊙O的直径,PA、PC是⊙O的切线,A、C为切点,∠BAC=30°.
(1)求∠P的大小;
(2)若AB=6,求PA的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

⊙O是△ABC的外接圆,AB是直径,过点C的切线与AB的延长线相交于点D,AE⊥DC交DC于点E.
(1)求证:AC是∠EAB的平分线;
(2)若圆的半径为3,BD=2,DC=4,求AE和BC.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,已知四边形OABC是菱形,∠O=60°,点M是边OA的中点,以点O为圆心,r为半径作⊙O分别交OA,OC于点D,E,连接BM.若BM=
7
DE
的长是
3
π
3
.求证:直线BC与⊙O相切.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EFBC交AB于E,交AC于F,过点O作OD⊥AC于D.下列四个结论:
①EF是△ABC的中位线.
②以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切;
③设OD=m,AE+AF=2n,则S△AEF=mn;
④∠BOC=90°+
1
2
∠A;
其中正确的结论是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,以点M(-l,0)为圆心的圆与y轴,x轴分别交于点A、B、C、D,直线y=-
3
3
x-
5
3
3
与⊙M相切于点H,交x轴于点E,交y轴于点F.
(1)求⊙M的半径;

(2)如图,弦HQ交x轴于点P,且PD:PH=4:
7
,求点P的坐标;

(3)如图,点K为线段EC上一动点(不与E、C重合),连接BK交⊙M于点G,连接AG.过点M作MN⊥x轴交BK于N.是否存在这样的点K,使得AG=MK?若存在,请求出GN的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,AB是⊙O的直径,P是AB上的一点(与A、B不重合),QP⊥AB,垂足为P,直线QA交⊙O于C点,过C点作⊙O的切线交直线QP于点D.则△CDQ是等腰三角形.
对上述命题证明如下:
证明:连接OC
∵OA=OC
∴∠A=∠1
∵CD切O于C点
∴∠OCD=90°
∴∠1+∠2=90°
∴∠A+∠2=90°
在Rt△QPA中,∠QPA=90°
∴∠A+∠Q=90°
∴∠2=∠Q
∴DQ=DC
即CDQ是等腰三角形.
问题:对上述命题,当点P在BA的延长线上时,其他条件不变,如图所示,结论“△CDQ是等腰三角形”还成立吗?若成立,请给予证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案