分析 由在△ABC中,AD⊥BC于点D,BE⊥AC于点E,可得∠BDF=∠ADC=90°与∠DBF=∠DAC,即可证得△BDF≌△ADC(ASA),继而证得:AF+DC=BD,即可知结果.
解答 解:∵AD⊥BC,BE⊥AC,
∴∠BDF=∠ADC=90°,
∴∠DBF+∠C=90°,∠DAC+∠C=90°,
∴∠DBF=∠DAC,
在△BDF和△ADC中,
$\left\{\begin{array}{l}{∠DBF=∠DAC}\\{BD=AD}\\{∠BDF=∠ADC}\end{array}\right.$,
∴△BDF≌△ADC(ASA),
∴BD=AD,DF=CD,
∴AF+CD=AF+DF=AD=BD.
∴AF+DC=BD,
∵BD=2,
∴AF+DC=2.
故答案为:2.
点评 此题考查了全等三角形的判定与性质.此题难度不大,熟练掌握全等三角形的判定与性质是解决问题的关键.
科目:初中数学 来源: 题型:选择题
A. | 2$\sqrt{3}$cm | B. | $\sqrt{3}$cm | C. | 2cm | D. | 4cm |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com