【题目】如图,在平面直角坐标系中,点C是y轴正半轴上的一个动点,抛物线y=ax2-6ax+5a(a是常数,且a>0)过点C,与x轴交于点A、B,点A在点B的左边.连接AC,以AC为边作等边三角形ACD,点D与点O在直线AC两侧,连接BD,则BD的最小值是_________.
【答案】3
【解析】
由抛物线的性质先求三点坐标,过点D作DE⊥AC于点E,过点D作x轴的垂线于点H,过点E作EF∥x轴交y轴于点F交DH于点G,利用等边三角形与相似三角形的性质求解的坐标,利用两点间距离公式建立与之间的函数关系式,利用函数性质求的最小值.
解:
如图,过点D作DE⊥AC于点E,过点D作x轴的垂线于点H,过点E作EF∥x轴交y轴于点F交DH于点G,
∵△ACD为等边三角形,则点E为AC的中点,
则点E( ),AE=CE=ED,
∵∠CEF+∠FCE=90°,∠CEF+∠DEG=90°,
∴∠DEG=∠ECF,
∴△CFE∽△EGD,
∴
为中点,轴,
解得:GE=,DG=
故点D( ),
故当时,的最小值
的最小值为 (负根舍去)
故答案为:
科目:初中数学 来源: 题型:
【题目】如图1,在中,,.
问题情境1:(1)与的数量关系为_______;
问题情境2:(2)如图2,若,且,则与的数量关系是什么.请说明理由;
拓展延伸:(3)将图2中的绕点顺时针旋转角度(),在旋转过程中,当,,三点在同一条直线上时,请直接写出,,之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某幼儿园举行用火柴棒摆“金鱼”比赛,如图所示,请仔细观察并找出规律,解答下列问题:
(1)按照此规律,摆第n个图时,需用火柴棒的根数是多少?
(2)求摆第50个图时所需用的火柴棒的根数;
(3)按此规律用1202根火柴棒摆出第n个图形,求n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为半圆O的直径,AC是⊙O的一条弦,D为的中点,作DE⊥AC,交AB的延长线于点F,连接DA.
(1)求证:EF为半圆O的切线;
(2)若DA=DF=6,求阴影区域的面积.(结果保留根号和π)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,BE是⊙O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点C
(I)若∠ADE=25°,求∠C的度数
(II)若AB=AC,求∠D的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图平面直角坐标系,已知二次函数(m>0)的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为点D.
(1)点B的坐标为 ,点D的坐标为 ;(用含有m的代数式表示)
(2)连接CD,BC.
①若,求二次函数的表达式;
②若把ABC沿着直线BC翻折,点A恰好在直线CD上,求二次函数的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解高邮市“新冠肺炎”疫情防控期间九年级学生线上学习情况,通过问卷网就“你对自己线上学习的效果评价”进行了问卷调查,从中随机抽取了部分样卷进行统计,绘制了如下的统计图
根据统计图信息,解答下列问题:
(1)本次调查的样本容量为 ;
(2)请补全条形统计图;
(3)扇形统计图中“较好”对应的扇形圆心角的度数为 ;
(4)若全市九年级线上学习人数有人,请估计对线上学习评价“非常好”的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:
若|x1x2|≥|y1y2|,则点P1与点P2的“非常距离”为|x1x2|;
若|x1x2||y1y2|,则点P1与点P2的“非常距离”为|y1y2|.
例如:点P1(1,2),点P2(3,5),因为|13||25|,所以点P1与点P2的“非常距离”为|25|3,也就是图中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).
(1)已知点A(0,1),
①在B(,0),C(2,1),D(1,2),E(0,)四个点中,与点A的“非常距离”为的点是;
②点F为x轴上一动点,直接写出点A与点F的“非常距离”的最小值;
(2)已知点M是直线y2x6上的一个动点,
①点G的坐标是(0,2),求点M与点G的“非常距离”的最小值及相应的点M的坐标;
①点N是以点(4,0)为圆心,为半径的圆上的一个动点,直接写出点M与点N的“非常距离”的最小值及相应的点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在B左边),与y轴交于点C.
(1)如图1,已知A(﹣1,0),B(3,0).
①直接写出抛物线的解析式;
②点H在x轴上,M(1,0),连接AC、MC、HC,若CM平分∠ACH,求H的坐标;
(2)如图2,直线y=﹣1与抛物线y=﹣x2+bx+c交于抛物线对称轴右侧的点为点D,点E与点D关于x轴对称.试判断直线DB与直线AE的位置关系,并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com