精英家教网 > 初中数学 > 题目详情
6.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是(  )
A.AB=BEB.BE⊥DCC.∠ADB=90°D.CE⊥DE

分析 先证明四边形BCDE为平行四边形,再根据矩形的判定进行解答.

解答 解:∵四边形ABCD为平行四边形,
∴AD∥BC,AD=BC,
又∵AD=DE,
∴DE∥BC,且DE=BC,
∴四边形BCED为平行四边形,
A、∵AB=BE,DE=AD,∴BD⊥AE,∴?DBCE为矩形,故本选项错误;
B、∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;
C、∵∠ADB=90°,∴∠EDB=90°,∴?DBCE为矩形,故本选项错误;
D、∵CE⊥DE,∴∠CED=90°,∴?DBCE为矩形,故本选项错误.
故选B.

点评 本题考查了平行四边形的判定和性质、矩形的判定,首先判定四边形BCDE为平行四边形是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.画出△ABC关于直线l的轴对称图形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,已知在等边三角形ABC中,AD⊥BC,AD=AC,联结CD并延长,交AB的延长线于点E,求∠E的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.手工课上,老师要求同学们将边长为4cm的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积(注:不同的分法,面积可以相等)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.阅读材料:
在一个三角形中,各边和它所对角的正弦的比相等,$\frac{a}{sinA}$=$\frac{b}{sinB}$=$\frac{c}{sinC}$,利用上述结论可以求解如下题目:
在△ABC中,∠A、∠B、∠C的对边分别为a,b,c.若∠A=45°,∠B=30°,a=6,求b.
解:在△ABC中,∵$\frac{a}{sinA}$=$\frac{b}{sinB}$∴b=$\frac{asinB}{sinA}$=$\frac{6sin30°}{sin45°}$=$\frac{6×\frac{1}{2}}{\frac{\sqrt{2}}{2}}$=3$\sqrt{2}$.
理解应用:
如图,甲船以每小时30$\sqrt{2}$海里的速度向正北方向航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,且乙船从B1处按北偏东15°方向匀速直线航行,当甲船航行20分钟到达A2时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距10$\sqrt{2}$海里.
(1)判断△A1A2B2的形状,并给出证明;
(2)求乙船每小时航行多少海里?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.已知:(a+6)2+$\sqrt{{b}^{2}-2b-3}$=0,则2b2-4b-a的值为12.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,将?ABCD的边AB延长至点E,使AB=BE,连接DE,EC,DE交BC于点O.
(1)求证:△ABD≌△BEC;
(2)连接BD,若∠BOD=2∠A,求证:四边形BECD是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=-$\frac{1}{25}$x2,当水面离桥拱顶的高度DO是4m时,这时水面宽度AB为(  )
A.-20mB.10mC.20mD.-10m

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.五边形ABCDE中,∠EAB=∠ABC=∠BCD=90°,AB=BC,且满足以点B为圆心,AB长为半径的圆弧AC与边DE相切于点F,连接BE,BD.
(1)如图1,求∠EBD的度数;
(2)如图2,连接AC,分别与BE,BD相交于点G,H,若AB=1,∠DBC=15°,求AG•HC的值.

查看答案和解析>>

同步练习册答案