A. | AB=BE | B. | BE⊥DC | C. | ∠ADB=90° | D. | CE⊥DE |
分析 先证明四边形BCDE为平行四边形,再根据矩形的判定进行解答.
解答 解:∵四边形ABCD为平行四边形,
∴AD∥BC,AD=BC,
又∵AD=DE,
∴DE∥BC,且DE=BC,
∴四边形BCED为平行四边形,
A、∵AB=BE,DE=AD,∴BD⊥AE,∴?DBCE为矩形,故本选项错误;
B、∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;
C、∵∠ADB=90°,∴∠EDB=90°,∴?DBCE为矩形,故本选项错误;
D、∵CE⊥DE,∴∠CED=90°,∴?DBCE为矩形,故本选项错误.
故选B.
点评 本题考查了平行四边形的判定和性质、矩形的判定,首先判定四边形BCDE为平行四边形是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | -20m | B. | 10m | C. | 20m | D. | -10m |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com