ÏÈÔĶÁ£¬ÔÙ½âÌ⣮

¶ÔÓÚÒ»Ôª¶þ´Î·½³Ìax2£«bx£«c£½0(a¡Ù0)£¬Í¨¹ýÅä·½¿É½«·½³Ì±äÐÎ(x£«)2£½¡ßa¡Ù0£¬¡à4a2¡Ù0£®

Íê³ÉÏÂÁÐÌî¿Õ£º

(1)

·½³Ìax2£«bx£«c£½0(a¡Ù0)µÄ¸ùµÄÇé¿öÈ¡¾öÓÚ________µÄÖµµÄ·ûºÅ£®

(2)

ijͬѧÅжϹØÓÚxµÄ·½³Ìx2£«2(k£­2)x£«k2£«4£½0µÄ¸ùµÄÇé¿ö£¬ÈçÏ£º

½â£ºb2£­4ac£½4(k£­2)2£­4¡Á1¡Á(k2£«4)¡¡¡¡¢Ù

£½£­16k¡¡¡¡¢Ú

¡ß£­16k£¼0¡¡¡¡¢Û

¡àb2£­4ac£¼0¡¡¡¡¢Ü

¡àÔ­·½³ÌÎÞʵÊý¸ù£®¡¡¡¡¢Ý

ÇëÅжÏËûµÄ½â´ðÊÇ·ñÕýÈ·£¬²¢Ð´³öÄãµÄÅжÏÀíÓÉ£®

´ð°¸£º
½âÎö£º

(1)

b2£­4ac

(2)

¡¡¡¡ËûµÄÅжϲ»ÕýÈ·

¡¡¡¡ÀíÓÉ£ºÒòΪ£­16k²»Ò»¶¨Ð¡ÓÚÁ㣮


Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÀí½âÌ⣺һ´ÎÊýѧÐËȤС×éµÄ»î¶¯¿ÎÉÏ£¬Ê¦ÉúÓÐÏÂÃæÒ»¶Î¶Ô»°£¬ÇëÄãÔĶÁÍêºóÔÙ½â´ðÏÂÃæÎÊÌ⣺
ÀÏʦ£ºÍ¬Ñ§ÃÇ£¬½ñÌìÎÒÃÇÀ´Ì½Ë÷ÈçÏ·½³ÌµÄ½â·¨£º£¨x2-x£©2-8£¨x2-x£©+12=0£®
ѧÉú¼×£ºÀÏʦ£¬ÏÈÈ¥À¨ºÅ£¬Ôٺϲ¢Í¬ÀàÏÐÐÂð£¿
ÀÏʦ£ºÕâÑù£¬Ô­·½³Ì¿ÉÕûÀíΪx4-2x3-7x2+8x+12=0£¬´ÎÊý±ä³ÉÁË4´Î£¬ÓÃÏÖÓеÄ֪ʶÎÞ·¨½â´ð£®Í¬Ñ§ÃÇÔÙ¹Û²ì¹Û²ì£¬¿´¿´Õâ¸ö·½³ÌÓÐʲôÌص㣿
ѧÉúÒÒ£ºÎÒ·¢ÏÖ·½³ÌÖÐx2-xÊÇÕûÌå³öÏֵģ¬×îºÃ²»ÒªÈ¥À¨ºÅ£¡
ÀÏʦ£ººÜºÃ£®Èç¹ûÎÒÃÇ°Ñx2-x¿´³ÉÒ»¸öÕûÌ壬ÓÃyÀ´±íʾ£¬ÄÇôԭ·½³Ì¾Í±ä³Éy2-8y+12=0£®
È«Ìåͬѧ£ºß×£¬Õâ²»ÊÇÎÒÃÇѧ¹ýµÄÒ»Ôª¶þ´Î·½³ÌÂð£¿
ÀÏʦ£º´ó¼ÒÕæ»á¹Û²ìºÍ˼¿¼£¬Ì«°ôÁË£¡ÏÔȻһԪ¶þ´Î·½³Ìy2-8y+12=0µÄ½âÊÇy1=6£¬y2=2£¬¾ÍÓÐx2-x=6»òx2-x=2£®
ѧÉú±û£º¶ÔÀ²£¬ÔÙ½âÕâÁ½¸ö·½³Ì£¬¿ÉµÃÔ­·½³ÌµÄ¸ùx1=3£¬x2=-2£¬x3=2£¬x4=-1£¬àÀ£¬ÓÐÕâô¶à¸ù°¡£®
ÀÏʦ£ºÍ¬Ñ§ÃÇ£¬Í¨³£ÎÒÃÇ°ÑÕâÖÖ·½·¨½Ð×ö»»Ôª·¨£®ÔÚÕâÀʹÓÃËü×î´óµÄÃî´¦ÔÚÓÚ½µµÍÁËÔ­·½³ÌµÄ´ÎÊý£¬ÕâÊÇÒ»ÖÖºÜÖØÒªµÄת»¯·½·¨£®
È«Ìåͬѧ£ºOK£¡»»Ôª·¨ÕæÉñÆ棡
ÏÖÔÚ£¬ÇëÄãÓû»Ôª·¨½âÏÂÁзÖʽ·½³Ì(
x
x-1
)2-5(
x
x-1
)-6=0
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÓëÀí½â£º
£¨1£©ÏÈÔĶÁÏÂÃæµÄ½âÌâ¹ý³Ì£º
·Ö½âÒòʽ£ºa2-6a+5
½â£º·½·¨£¨1£©Ô­Ê½=a2-a-5a+5
=£¨a2-a£©+£¨-5a+5£©
=a£¨a-1£©-5£¨a-1£©
=£¨a-1£©£¨a-5£©
·½·¨£¨2£©Ô­Ê½=a2-6a+9-4
=£¨a-3£©2-22
=£¨a-3+2£©£¨a-3-2£©
=£¨a-1£©£¨a-5£©
ÔÙÇëÄã²Î¿¼ÉÏÃæÒ»Öֽⷨ£¬¶Ô¶àÏîʽx2+4x+3½øÐÐÒòʽ·Ö½â£»
£¨2£©ÔĶÁÏÂÃæµÄ½âÌâ¹ý³Ì£º
ÒÑÖªm2+n2-4m+6n+13=0£¬ÊÔÇómÓënµÄÖµ£®
½â£ºÓÉÒÑÖªµÃ£ºm2-4m+4+n2+6n+9=0
Òò´ËµÃµ½£º£¨m-2£©2+£¨n+3£©2=0
ËùÒÔÖ»Óе±£¨m-n£©=0²¢ÇÒ£¨n+3£©=0ÉÏʽ²ÅÄܳÉÁ¢£®
Òò¶øµÃ£ºm=2 ²¢ÇÒ n=-3
ÇëÄã²Î¿¼ÉÏÃæµÄ½âÌâ·½·¨½â´ðÏÂÃæµÄÎÊÌ⣺
ÒÑÖª£ºx2+y2+2x-4y+5=0£¬ÊÔÇóxyµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2012-2013ѧÄê½­ËÕÊ¡ÑïÖÝÊÐÚõ½­ÇøÆßÄ꼶ÏÂѧÆÚÆÚÖп¼ÊÔÊýѧÊÔ¾í£¨´ø½âÎö£© ÌâÐÍ£º½â´ðÌâ

ÔĶÁÓëÀí½â£º
£¨1£©ÏÈÔĶÁÏÂÃæµÄ½âÌâ¹ý³Ì£º
·Ö½âÒòʽ£º                        
½â£º·½·¨£¨1£©Ô­Ê½


             
·½·¨£¨2£©Ô­Ê½ 



ÔÙÇëÄã²Î¿¼ÉÏÃæÒ»Öֽⷨ£¬¶Ô¶àÏîʽ½øÐÐÒòʽ·Ö½â£»
£¨2£©ÔĶÁÏÂÃæµÄ½âÌâ¹ý³Ì£º
ÒÑÖª£º£¬ÊÔÇóÓëµÄÖµ¡£
½â£ºÓÉÒÑÖªµÃ£º
Òò´ËµÃµ½£º
ËùÒÔÖ»Óе±²¢ÇÒÉÏʽ²ÅÄܳÉÁ¢¡£
Òò¶øµÃ£º ²¢ÇÒ         
ÇëÄã²Î¿¼ÉÏÃæµÄ½âÌâ·½·¨½â´ðÏÂÃæµÄÎÊÌ⣺
ÒÑÖª£º£¬ÊÔÇóµÄÖµ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2015½ì½­ËÕÊ¡ÑïÖÝÊÐÚõ½­ÇøÆßÄ꼶ÏÂѧÆÚÆÚÖп¼ÊÔÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÔĶÁÓëÀí½â£º

£¨1£©ÏÈÔĶÁÏÂÃæµÄ½âÌâ¹ý³Ì£º

·Ö½âÒòʽ£º                        

½â£º·½·¨£¨1£©Ô­Ê½

             

·½·¨£¨2£©Ô­Ê½ 

ÔÙÇëÄã²Î¿¼ÉÏÃæÒ»Öֽⷨ£¬¶Ô¶àÏîʽ½øÐÐÒòʽ·Ö½â£»

£¨2£©ÔĶÁÏÂÃæµÄ½âÌâ¹ý³Ì£º

ÒÑÖª£º£¬ÊÔÇóÓëµÄÖµ¡£

½â£ºÓÉÒÑÖªµÃ£º

Òò´ËµÃµ½£º

ËùÒÔÖ»Óе±²¢ÇÒÉÏʽ²ÅÄܳÉÁ¢¡£

Òò¶øµÃ£º ²¢ÇÒ         

ÇëÄã²Î¿¼ÉÏÃæµÄ½âÌâ·½·¨½â´ðÏÂÃæµÄÎÊÌ⣺

ÒÑÖª£º£¬ÊÔÇóµÄÖµ

 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

ÔĶÁÓëÀí½â£º
£¨1£©ÏÈÔĶÁÏÂÃæµÄ½âÌâ¹ý³Ì£º
·Ö½âÒòʽ£ºa2-6a+5
½â£º·½·¨£¨1£©Ô­Ê½=a2-a-5a+5
=£¨a2-a£©+£¨-5a+5£©
=a£¨a-1£©-5£¨a-1£©
=£¨a-1£©£¨a-5£©
·½·¨£¨2£©Ô­Ê½=a2-6a+9-4
=£¨a-3£©2-22
=£¨a-3+2£©£¨a-3-2£©
=£¨a-1£©£¨a-5£©
ÔÙÇëÄã²Î¿¼ÉÏÃæÒ»Öֽⷨ£¬¶Ô¶àÏîʽx2+4x+3½øÐÐÒòʽ·Ö½â£»
£¨2£©ÔĶÁÏÂÃæµÄ½âÌâ¹ý³Ì£º
ÒÑÖªm2+n2-4m+6n+13=0£¬ÊÔÇómÓënµÄÖµ£®
½â£ºÓÉÒÑÖªµÃ£ºm2-4m+4+n2+6n+9=0
Òò´ËµÃµ½£º£¨m-2£©2+£¨n+3£©2=0
ËùÒÔÖ»Óе±£¨m-n£©=0²¢ÇÒ£¨n+3£©=0ÉÏʽ²ÅÄܳÉÁ¢£®
Òò¶øµÃ£ºm=2 ²¢ÇÒ n=-3
ÇëÄã²Î¿¼ÉÏÃæµÄ½âÌâ·½·¨½â´ðÏÂÃæµÄÎÊÌ⣺
ÒÑÖª£ºx2+y2+2x-4y+5=0£¬ÊÔÇóxyµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸