精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ∥BD交BE于点Q,连接QD.设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是( )

A.
B.
C.
D.

【答案】C
【解析】解:∵∠ABE=45°,∠A=90°,
∴△ABE是等腰直角三角形,
∴AE=AB=2,BE= AB=2
∵BE=DE,PD=x,
∴PE=DE﹣PD=2 ﹣x,
∵PQ∥BD,BE=DE,
∴QE=PE=2 ﹣x,
又∵△ABE是等腰直角三角形(已证),
∴点Q到AD的距离= (2 ﹣x)=2﹣ x,
∴△PQD的面积y= x(2﹣ x)=﹣ (x2﹣2 x+2)=﹣ (x﹣ .)2+
即y=﹣ (x﹣ 2+
纵观各选项,只有C选项符合.
故选:C.
判断出△ABE是等腰直角三角形,根据等腰直角三角形的性质求出AE、BE,然后表示出PE、QE,再求出点Q到AD的距离,然后根据三角形的面积公式表示出y与x的关系式,再根据二次函数图象解答.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,函数y=ax2+bx+c(a≠0)的图象与x轴相交于A、B两点,頂点为点M.則下列说法不正确的是(
A.a<0
B.当x=﹣1时,函数y有最小值4
C.对称轴是直线=﹣1
D.点B的坐标为(﹣3,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程
(1)7x(5x+2)=6(5x+2)
(2)4x2﹣8x+1=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:在数学课上,老师给同学们布置了一道尺规作图题: 尺规作图:作Rt△ABC,使其斜边AB=c,一条直角边BC=a.已知:如图1,正比例函数和反比例函数的
图象分别交于M、N两点.
要求:在y轴上求作点P,使得∠MPN为直角.
小丽的作法如下:如图2,以点O为圆心,以OM长为半径作⊙O,
⊙O与y轴交于P1、P2两点,则点P1、P2即为所求.
老师说:“小丽的作法正确.”
请回答:小丽这样作图的依据是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数y=x2+3x+2的图象如图1所示,根据图象回答问题:
(1)当x时,x2+3x+2>0;
(2)在上述问题的基础上,探究解决新问题: ①函数y= 的自变量x的取值范围是
②如表是函数y= 的几组y与x的对应值.

x

﹣7

﹣6

﹣4

﹣3

﹣2

﹣1

0

1

3

4

y

5.477…

4.472…

2.449…

1.414…

0

0

1.414…

2.449…

4.472…

5.477…

如图2,在平面直角坐标系xOy中,描出了上表中各对对应值为坐标的点的大概位置,请你根据描出的点,画出该函数的图象:
③写出该函数的一条性质:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1个单位长度的小正方形组成的网格中.
(1)以图中的点O为位似中心,在网格中画出△ABC的位似图形△A1B1C1 , 使△A1B1C1与△ABC的位似比为2:1;
(2)若△A1B1C1的面积为S,则△ABC的面积是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A(10,0),B(4,8),C(0,8),连接AB,BC,点P在x轴上,从原点O出发,以每秒1个单位长度的速度向点A运动,同时点M从点A出发,以每秒2个单位长度的速度沿折线A﹣B﹣C向点C运动,其中一点到达终点时,另一点也随之停止运动,设P,M两点运动的时间为t秒.

(1)求AB长;
(2)设△PAM的面积为S,当0≤t≤5时,求S与t的函数关系式,并指出S取最大值时,点P的位置;
(3)t为何值时,△APM为直角三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,D是AC边上一点,且AD=2DC,E是AB边上一点,ED与BC的延长线相交于点F,且BC=CF,G是EF的中点,连接CG,若CG=2,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知反比例函数y=﹣ ,下列结论不正确的是(
A.图象必经过点(﹣1,2)
B.y随x的增大而增大
C.图象在第二、四象限内
D.若x>1,则y>﹣2

查看答案和解析>>

同步练习册答案