精英家教网 > 初中数学 > 题目详情

【题目】如图,AB⊙O的直径,点CD⊙O上,∠A=2∠BCD,点EAB的延长线上,∠AED=∠ABC

1)求证:DE⊙O相切;

2)若BF=2DF=,求⊙O的半径.

【答案】1)详见解析;(25.

【解析】

试题(1)连接OD,由AB⊙O的直径可得∠ACB=90°,所以∠A+∠ABC=90°,即可证得∠BOD=∠A,从而推出∠ODE=90°,即可得到结论;(2)连接BD,过DDH⊥BFH,由弦切角定理得到∠BDE=∠BCD,推出△ACF△FDB都是等腰三角形,根据等腰直角三角形的性质得到FH=BH=BF=1,则FH=1,根据勾股定理得到HD=3,然后根据勾股定理列方程即可得到结论.

试题解析:(1)证明:连接OD

∵AB⊙O的直径,

∴∠ACB=90°

∴∠A+∠ABC=90°

∵∠BOD=2∠BCD∠A=2∠BCD

∴∠BOD=∠A

∵∠AED=∠ABC

∴∠BOD+∠AED=90°

∴∠ODE=90°

OD⊥DE

∴DE⊙O相切;

2)解:连接BD,过DDH⊥BFH

∵DE⊙O相切,

∴∠BDE=∠BCD

∵∠AED=∠ABC

∴∠AFC=∠DBF

∵∠AFC=∠DFB

∴△ACF△FDB都是等腰三角形,

∴FH=BH=BF=1,则FH=1,由勾股定理可得HD==3

Rt△ODH中,OH2+DH2=OD2

即(OD﹣12+32=OD2

∴OD=5

∴⊙O的半径是5

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】几何体的三视图相互关联.已知直三棱柱的三视图如图,在△PMN中,∠MPN=90°,PN=4,sin∠PMN=

(1)求BCFG的长;

(2)若主视图与左视图两矩形相似,求AB的长;

(3)在(2)的情况下,求直三棱柱的表面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个求助没有用(使用求助可以让主持人去掉其中一题的一个错误选项).

(1)如果小明第一题不使用求助,那么小明答对第一道题的概率是  

(2)如果小明将求助留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.

(3)从概率的角度分析,你建议小明在第几题使用求助.(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着电影《流浪地球》的热映,科幻大神刘慈欣的著作受到广大书迷的追捧,《流浪地球》《球状闪电》《三体》《超新星纪元》四部小说在某网上书城热销.已知《流浪地球》的销售单价与《球状闪电》相同,《三体》的销售单价是《超新星纪元》单价的3倍,《流浪地球》与《超新星纪元》的单价和大于40元且不超过50元;若自电影上映以来,《流浪地球》与《超新星纪元》的日销售量相同,《球状闪电》的日销售量为《三体》日销售量的3倍,《流浪地球》与《三体》的日销售量和为450本,且《流浪地球》的日销售量不低于《三体》的日销量的且小于230本;《流浪地球》《三体》的日销量额之和比《球状闪电》《超新星纪元》的日销售额之和多1575元.则当《流浪地球》《三体》这2部小说日销额之和最多时,《流浪地球》的单价为_____元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低,若该果园每棵果树产果y千克,增种果树x棵,它们之间的函数关系如图所示.

(1)求y与x之间的函数解析式;

(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?

(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:

(1)画出ABC关于原点O成中心对称的A1B1C1,并写出A1的坐标;

(2)画出ABC绕点B逆时针旋转90°后得到的A2B2C2,并求出点C在旋转过程中经过的路径长是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明解方程=3出现了错误,解答过程如下:

方程两边都乘以(x-2),得1-(1-x)=3(第一步)

去括号,得1-1+x=3(第二步)

移项,合并同类项,得x=3(第三步)

检验,当x=3x-2≠0(第四步)

所以x=3是原方程的解.(第五步)

(1)小明解答过程是从第____步开始出错的,原方程化为第一步的根据是_____

(2)请写出此题正确的解答过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】课本中有一道作业题:

有一块三角形余料ABC,它的边BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在ABAC上.问加工成的正方形零件的边长是多少mm

小颖解得此题的答案为48mm,小颖善于反思,她又提出了如下的问题.

1)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少mm?请你计算.

2)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:AB是O的直径,弦CDAB于点G,E是直线AB上一动点不与点A、B、G重合,直线DE交O于点F,直线CF交直线AB于点PO的半径为r

1如图1,当点E在直径AB上时,试证明:

2当点E在直径AB或BA的延长线上时,以如图2点E的位置为例,请你画出符合题意的图形,标注上字母,1中的结论是否成立?请说明理由

查看答案和解析>>

同步练习册答案