精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.

(1)求证:∠ACD=∠B;
(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.

【答案】
(1)

证明:∵∠ACB=90゜,CD⊥AB于D,

∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,

∴∠ACD=∠B;


(2)

证明:在Rt△AFC中,∠CFA=90°﹣∠CAF,

同理在Rt△AED中,∠AED=90°﹣∠DAE.

又∵AF平分∠CAB,

∴∠CAF=∠DAE,

∴∠AED=∠CFE,

又∵∠CEF=∠AED,

∴∠CEF=∠CFE.


【解析】(1)由于∠ACD与∠B都是∠BCD的余角,根据同角的余角相等即可得证;(2)根据直角三角形两锐角互余得出∠CFA=90°﹣∠CAF,∠AED=90°﹣∠DAE,再根据角平分线的定义得出∠CAF=∠DAE,然后由对顶角相等的性质,等量代换即可证明∠CEF=∠CFE.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了了解八年级学生参加社会实践活动情况,某区教育部门随机调查了本区部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据绘制了统计图①和图②,请根据图中提供的信息,回答下列问题:
(1)本次接受随机抽样调查的学生人数为 , 图①中的m的值为
(2)求本次抽样调查获取的样本数据的众数、中位数和平均数;
(3)若该区八年级学生有3000人,估计参加社会实践活动时间大于7天的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A=2x2﹣9x﹣11,B=3x2﹣6x+4.求:
(1)A﹣B;
(2)A+2B.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算下列各式的值:
(1)( + )﹣
(2)(﹣3)2﹣|﹣ |+
(3)x2﹣121=0;
(4)(x﹣5)3+8=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解应用题: 老舍先生曾说“天堂是什么样子,我不晓得,但从我的生活经验去判断,北平之秋便是天堂.”(摘自《住的梦》)金黄色的银杏叶为北京的秋增色不少.
小宇家附近新修了一段公路,他想给市政写信,建议在路的两边种上银杏树.他先让爸爸开车驶过这段公路,发现速度为60千米/小时,走了约3分钟,由此估算这段路长约千米.
然后小宇查阅资料,得知银杏为落叶大乔木,成年银杏树树冠直径可达8米.小宇计划从路的起点开始,每a米种一棵树,绘制示意图如下:

考虑到投入资金的限制,他设计了另一种方案,将原计划的a扩大一倍,则路的两侧共计减少200棵树,请你求出a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】m是方程x2+x10的一个根,则代数式2019m2m的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义运算 = ,若a≠﹣1,b≠﹣1,则下列等式中不正确的是( )
A.
× =1
B.
+ =
C.( 2=
D.
=1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算与解方程
(1)+ +
(2)(﹣ 2﹣|1﹣ |+ ﹣5
(3)求x值:(3x+1)2=16
(4)(x﹣2)3﹣1=﹣28.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.给出以下结论: ①DG=DF; ②四边形EFDG是菱形; ③

④当时,BE的长为,其中正确的结论个数是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案