精英家教网 > 初中数学 > 题目详情
如图,矩形OABC中,A(6,0)、C(0,2)、D(0,3),射线l过点D且与x轴平行,点P、Q分别是l和x轴的正半轴上的动点,满足∠PQO=60º.

(1)点B的坐标是             ,∠CAO=         º,当点Q与点A重合时,点P的坐标
             
(2)设点P的横坐标为x,△OPQ与矩形OABC重叠部分的面积为S,试求S与x的函数关系式和相应的自变量x的取值范围.
(1)(6,2)。  30。(3,3)(2)
解:(1)(6,2)。  30。(3,3)。
(2)当0≤x≤3时,
如图1,

OI=x,IQ=PI•tan60°=3,OQ=OI+IQ=3+x;
由题意可知直线l∥BC∥OA,
可得,∴EF=(3+x),
此时重叠部分是梯形,其面积为:

当3<x≤5时,如图2,


当5<x≤9时,如图3,


当x>9时,如图4,


综上所述,S与x的函数关系式为:

(1)①由四边形OABC是矩形,根据矩形的性质,即可求得点B的坐标:
∵四边形OABC是矩形,∴AB=OC,OA=BC,
∵A(6,0)、C(0,2),∴点B的坐标为:(6,2)。
②由正切函数,即可求得∠CAO的度数:
,∴∠CAO=30°。
③由三角函数的性质,即可求得点P的坐标;如图:当点Q与点A重合时,过点P作PE⊥OA于E,

∵∠PQO=60°,D(0,3),∴PE=3

∴OE=OA﹣AE=6﹣3=3,∴点P的坐标为(3,3)。
(2)分别从当0≤x≤3时,当3<x≤5时,当5<x≤9时,当x>9时去分析求解即可求得答案。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,△ABC和△CDE均为等腰直角三角形,点B,C,D在一条直线上,点M是AE的中点,BC=3,CD=1.

(1)求证tan∠AEC=
(2)请探究BM与DM的关系,并给出证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

计算:

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)情景一:如图(1)中AC=40m,CB=30m,从教室楼到宿舍楼,总有少数同学不走人行道AC和BC,而直接横穿草坪(即从A到B),你认为他们这样走,近了多少米?说明理由.

(2)情景二:M、N是河流l旁的两个村庄,现要在河边修一个抽水站向M、N村供水,问抽水站修在什么地方才能使所需的管道最短?请在图(2)中画出抽水站点P的位置.(保留作图痕迹,不写作法)

(3)数学知识来源于生活并且用来为人们服务,上面两个情景你赞同哪一个?你有何感想?(简要说明)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在Rt△ABC中,∠C=90°,∠B=∠A,则AB=    AC.

查看答案和解析>>

科目:初中数学 来源:不详 题型:计算题

计算:

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

极具特色的“八卦楼”(又称“威镇阁”)是漳州的标志性建筑,它建立在一座平台上.为了测量“八卦楼”的高度AB,小华在D处用高1.1米的测角仪CD,测得楼的顶端A的仰角为22o;再向前走63米到达F处,又测得楼的顶端A的仰角为39o(如图是他设计的平面示意图).已知平台的高度BH约为13米,请你求出“八卦楼”的高度约多少米?
(参考数据:sin22o,tan220,sin39o,tan39o)   

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在中,边上的高, 求的长.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某数学兴趣小组,利用树影测量树高.已测出树AB的影长AC为9米,并测出此时太阳光线与地面成30°夹角.
(1)求出树高AB;
(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变,试求树影的最大长度.
(计算结果精确到0.1米,参考数据:≈1.414, ≈1.732)

查看答案和解析>>

同步练习册答案