精英家教网 > 初中数学 > 题目详情
15.【问题情境】如图①,在△ABC中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.
小丽给出的提示是:如图②,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
请根据小丽的提示进行证明.

【变式探究】如图③,当点P在BC延长线上时,其余条件不变,试猜想PD、PE、CF三者之间的数量关系并证明.
【结论运用】如图④,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值.

分析 【问题情境】连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
【变式探究】连接AP,由△ABP与△ACP面积之差等于△ABC的面积可以证得:CF=PD-PE.
【结论运用】先证BE=BF,过点E作EQ⊥BF,垂足为Q,利用问题情境中的结论可得PG+PH=EQ,易证EQ=DC,故只需求出DC即可.

解答 解:【问题情境】
证明:连接AP,如图②,
∵PD⊥AB,PE⊥AC,CF⊥AB,
且S△ABC=S△ABP+S△ACP
∴$\frac{1}{2}$ AB•CF=$\frac{1}{2}$AB•PD+$\frac{1}{2}$AC•PE.  
∵AB=AC,
∴CF=PD+PE.   

【变式探究】
证明:连接AP,如图③.
∵PD⊥AB,PE⊥AC,CF⊥AB,
且S△ABC=S△ABP-S△ACP
∴$\frac{1}{2}$AB•CF=$\frac{1}{2}$AB•PD-$\frac{1}{2}$AC•PE.
∵AB=AC,
∴CF=PD-PE. 

【结论运用】
过点E作EQ⊥BC,垂足为Q,如图④,
∵四边形ABCD是矩形,
∴AD=BC,∠C=∠ADC=90°.
∵AD=8,CF=3,
∴BF=BC-CF=AD-CF=5.
由折叠可得:DF=BF,∠BEF=∠DEF.
∴DF=5.
∵∠C=90°,
∴DC=$\sqrt{D{F}^{2}-C{F}^{2}}$=$\sqrt{{5}^{2}-{3}^{2}}$=4.  
∵EQ⊥BC,∠C=∠ADC=90°,
∴∠EQC=90°=∠C=∠ADC,
∴四边形EQCD是矩形,
∴EQ=DC=4.
∵AD∥BC,
∴∠DEF=∠EFB.
∵∠BEF=∠DEF,
∴∠BEF=∠EFB,
∴BE=BF. 
由问题情境中的结论可得:PG+PH=EQ,
∴PG+PH=4,
∴PG+PH的值为4.

点评 本题主要考查四边形的综合运用,涉及等腰三角形的性质、三角形的面积、勾股定理和平行线的性质等知识,也考查了用面积法证明几何问题,运用已有的经验解决问题的能力,体现了自主探究与合作交流的新理念,是充分体现新课程理念难得的好题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

5.如图,OP为∠AOB内的一条射线,PC⊥OA,PD⊥OB,垂足分别是C,D,请添加一个条件OC=OD,使△COP≌△DOP(填一个即可).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,点P是正方形ABCD内一点,PA=1,PD=$\sqrt{10}$,∠APB=135°,则PB的长为2$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.为了了解某学校七年级4个班共180人的体质健康情况,从各班分别抽取同样数量的男生和女生组成一个样本,如图是根据样本绘制的条形图和扇形图.

(1)本次抽查的样本容量是40.
(2)请补全条形图和扇形图中的百分数;
(3)请你估计全校七年级共有多少人优秀.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,其中点B的坐标为(1,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是-1<k<$\frac{1}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.已知x2+3x=1,则代数式2x2+6x-5的值为-3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图1,已知△ABC的两个外角平分线DA、DC相交于点D,过D分别作DE⊥AB于E,DF⊥BC于F.
(1)若∠B=80°,则∠ADC=50°.
(2)证明:DE=DF
(3)探究线段AE、AC、CF之间的数量关系.
①如图2,小王同学探究此问题的方法是:延长CF到点G,使FG=AE,连结DG,由(2)知,DE=DF,从而证明△ADE≌△GDF,再证明△ADC≌△GDC,可得出结论,他的结论应是AC=AE+CF.②你还有其他方法证明①中的结论吗?请利用“备用图”说明.
②你还有其他方法证明①中的结论吗?请利用“备用图”说明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.用配方法解方程:2x2-3x+1=0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,AD是正五边形ABCDE的一条对角线,则∠BAD=72°.

查看答案和解析>>

同步练习册答案