精英家教网 > 初中数学 > 题目详情
9.如图,AD是△ABC的角平分线,以AD为弦的⊙O交AB、AC于E、F,已知EF∥BC.
(1)求证:BC是⊙O的切线;
(2)若已知AE=12,CF=6,求DE的长.

分析 (1)连接OD,由角平分线的定义得到∠1=∠2,得到$\widehat{DE}$=$\widehat{DF}$,根据垂径定理得到OD⊥EF,根据平行线的性质得到OD⊥BC,于是得到结论;
(2)连接DE,由$\widehat{DE}$=$\widehat{DF}$,得到DE=DF,根据平行线的性质得到∠3=∠4,等量代换得到∠1=∠4,根据相似三角形的性质即可得到结论;

解答 (1)证明:连接OD,
∵AD是△ABC的角平分线,
∴∠1=∠2,
∴$\widehat{DE}$=$\widehat{DF}$,
∴OD⊥EF,
∵EF∥BC,
∴OD⊥BC,
∴BC是⊙O的切线;

(2)解:连接DE,
∵$\widehat{DE}$=$\widehat{DF}$,
∴DE=DF,
∵EF∥BC,
∴∠3=∠4,
∵∠1=∠3,
∴∠1=∠4,
∵∠DFC=∠AED,
∴△AED∽△DFC,
∴$\frac{AE}{DF}$=$\frac{DE}{CF}$,即$\frac{12}{DE}$=$\frac{DE}{6}$,
∴DE2=72,
∴DE=6$\sqrt{2}$.

点评 本题考查了切线的判定,圆周角定理,相似三角形的判定和性质,解直角三角形,平行线的性质,正确的作出辅助线是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.为庆祝某商场开业,商场推出两种购物方案:方案一,非会员购物所有商品价格可获得九折优惠,方案二:如交纳500元会员费成为该商场会员,则所有商品价格可获八五折优惠.
(1)设x(元)表示某商品价格,y(元)表示购买该商品支出的金额,分别写出两种购物方案中y关于x的函数解析式;
(2)若某人计划在该商场购买价格为13500元的苹果电脑一台,请分析选择哪种方案更省钱?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.某文教店老板到批发市场选购A、B两种品牌的绘图工具套装,每套A品牌套装进价比B品牌每套套装进价多2.5元,已知用200元购进A种套装的数量是用75元购进B种套装数量的2倍.
(1)求A、B两种品牌套装每套进价分别为多少元?
(2)若A品牌套装每套售价为13元,B品牌套装每套售价为9.5元,店老板决定,购进B品牌的数量比购进A品牌的数量的2倍还多4套,两种工具套装全部售出后,要使总的获利超过120元,则最少购进A品牌工具套装多少套?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知关于x的方程x2+mx+m-2=0.
(1)求证:无论m取何值时,方程总有两个不相等的实数根;
(2)设方程两实数根分别为x1,x2,且满足x12+x22=-3x1x2,求实数m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M.当△EFG绕点D旋转时,点M运动的路径长为4π.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,点E是边CD的中点,连接BE并延长交AD的延长线于点F,连接CF.
(1)求证:四边形BDFC是平行四边形;
(2)若CB=CD,求四边形BDFC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.某地2015年为做好“精准扶贫”,投入资金1500万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1440万元.
(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?
(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励9元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.为了让书籍开拓学生的视野,陶冶学生的情操,某中学开展课外阅读活动.为了解全校学生课外阅读情况,抽样调查了50名学生平均每天课外阅读时间(单位:min),将抽查得到的数据分成5组,下面是尚未完成的频数、频率分布表:
组别分组频数(人数)频率
110≤t<30a0.16
230≤t<5020m
350≤t<70b0.28
470≤t<906n
590≤t<110cp
(1)将频数和频率分布表补全,直接写出上面的频数a、b、c和频率m、n、p的值;
(2)请在给出的平面直角坐标系中画出相应的频数直方图;
(3)如果该校有1500名学生,请你估计该校共有多少名学生平均每天阅读时间不少于50min?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.有红、黄两个盒子,红盒子中装有编号分别为1、2、3、4的四个红球,黄盒子中装有编号为1、2、3的三个黄球.甲、乙两人玩摸球游戏,游戏规则为:甲从红盒子中每次摸出一个小球,乙从黄盒子中每次摸出一个小球,若两球编号之和为奇数,则甲胜,否则乙胜.
(1)试用列表或画树形图的方法,求甲获胜的概率;
(2)请问这个游戏规则对甲、乙双方公平吗?请说明理由.

查看答案和解析>>

同步练习册答案