【题目】如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为.双曲线的图象经过BC的中点D,且与AB交于点E,连接DE.
(1)求k的值及点E的坐标;
(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式.
【答案】(1)k=3,点E的坐标为;(2)
【解析】
(1)首先根据点B的坐标和点D为BC的中点表示出点D的坐标,代入反比例函数的解析式求得k值,然后将点E的横坐标代入求得E点的纵坐标即可;
(2)根据△FBC∽△DEB,利用相似三角形对应边的比相等确定点F的坐标后即可求得直线FB的解析式.
解:(1)∵BC∥x轴,点B的坐标为(2,3),
∴BC=2,
∵点D为BC的中点,
∴CD=1,
∴点D的坐标为(1,3),
代入双曲线y=(x>0)得;
∵BA∥y轴,
∴点E的横坐标与点B的横坐标相等,为2,
∵点E在双曲线上,
∴y=
∴点E的坐标为(2,);
(2)∵点E的坐标为(2,),B的坐标为(2,3),点D的坐标为(1,3),
∴BD=1,BE=,BC=2,
∵△FBC∽△DEB,
∴,
即:,
∴FC=,
∴点F的坐标为(0,),
设直线FB的解析式y=kx+b(k≠0),
则,
解得:k=,b=,
∴直线FB的解析式.
科目:初中数学 来源: 题型:
【题目】图1是一台实物投影仪,图2是它的示意图,折线O﹣A﹣B﹣C表示支架,支架的一部分O﹣A﹣B是固定的,另一部分BC是可旋转的,线段CD表示投影探头,OM表示水平桌面,AO⊥OM,垂足为点O,且AO=7cm,∠BAO=160°,BC∥OM,CD=8cm.
将图2中的BC绕点B向下旋转45°,使得BCD落在BC′D′的位置(如图3所示),此时C′D′⊥OM,AD′∥OM,AD′=16cm,求点B到水平桌面OM的距离,(参考数据:sin70°≈0.94,cos70°≈0.34,cot70°≈0.36,结果精确到1cm)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:
一百馒头一百僧,大僧三个更无争,
小僧三人分一个,大小和尚得几丁.
意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是( )
A. 大和尚25人,小和尚75人 B. 大和尚75人,小和尚25人
C. 大和尚50人,小和尚50人 D. 大、小和尚各100人
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中是直径,点是上一点,点是的中点,过点作的切线,与、的延长线分别交于点、,连接.
(1)求证:.
(2)已知的半径为2,当为何值时,,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,阳光下,小亮的身高如图中线段AB所示,他在地面上的影子如图中线段BC所示,线段DE表示旗杆的高,线段FG表示一堵高墙.
(1)请你在图中画出旗杆在同一时刻阳光照射下形成的影子,并用线段表示;
(2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗杆的高DE=15m,旗杆与高墙的距离EG=16m,请求出旗杆的影子落在墙上的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】老师给同学们布置了一个“在平面内找一点,使该点到等腰三角形的三个顶点的距离相等”的尺规作图任务:
下面是小聪同学设计的尺规作图过程:
已知:如图,中,,
求作:一点,使得.
作法:
①作的平分线交于点;
②作边的垂直平分线,与相交于点;
③连接,
所以,点就是所求作的点.
根据小聪同学设计的尺规作图过程,
(1)使用直尺和圆规,补全图形(保留作图痕迹)
(2)完成下面的证明.
证明:∵,平分交于点,
∴是的垂直平分线;( )(填推理依据)
∴.
∵垂直平分,交于点,
∴;( )(填推理依据)
∴.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在等边三角形ABC中,CD为中线,点Q在线段CD上运动,将线段QA绕点Q顺时针旋转,使得点A的对应点E落在射线BC上,连接BQ,设∠DAQ=α
(0°<α<60°且α≠30°).
(1)当0°<α<30°时,
①在图1中依题意画出图形,并求∠BQE(用含α的式子表示);
②探究线段CE,AC,CQ之间的数量关系,并加以证明;
(2)当30°<α<60°时,直接写出线段CE,AC,CQ之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,M,N分别为锐角∠AOB的边OA,OB上的点,ON=6,把△OMN沿MN折叠,点O落在点C处,MC与OB交于点P,若MN=MP=5,则PN=( )
A.2B.3C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与探究
问题情境
在综合实践课上,老师让同学们探究“平面直角坐标系中的旋转问题”.如图,在平面直角坐标系中,四边形是矩形,点,点,点.
操作发现
以点为中心,顺时针旋转矩形,得到矩形,点,,的对应点分别为,,.
(1)如图①,当点落在边上时,求点的坐标;
继续探究
(2)如图②,当点落在线段上时,与交于点.
①求证;
②求点的坐标.
拓展探究
(3)如图①,点是轴上任意一点,点是平面内任意一点,是否存在点使以、、、为顶点的四边形是菱形?若存在,请直接写出点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com