精英家教网 > 初中数学 > 题目详情
19.已知等腰直角三角形斜边上的中线为5cm,则以直角边为边的正方形的面积为(  )
A.10cm2B.15cm2C.50cm2D.25cm2

分析 根据直角三角形斜边上的中线等于斜边的一半即可求得斜边的长,进而得出直角边的长解答即可.

解答 解:根据直角三角形的斜边上的中线等于斜边的一半,可得斜边长为10cm,可得:直角边的长为5$\sqrt{2}$cm,
所以以直角边为边的正方形的面积为50cm2
故选C

点评 此题主要考查了等腰直角三角形的性质,关键是根据直角三角形斜边上的中线等于斜边的一半即可求得斜边的长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.在平面直角坐标系中,点O为坐标原点,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与l2相交于P.点E为直线l2上一点,反比例函数y=$\frac{k}{x}$(k>0)的图象过点E且与直线l1相交于点F.
(1)若点E与点P重合,求k的值;
(2)连接OE、OF、EF,若△OEF的面积为△PEF面积的2倍,求点E的坐标;
(3)当k>2时,在y轴上是否存在一点G,使△FEG是等腰直角三角形?如果存在,求出G点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.若抛物线y=ax2+bx+c(a≠0)的顶点是A(2,1),且经过点B(1,0),则抛物线对应的函数表达式为y=-x2+4x-3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.方程组$\left\{\begin{array}{l}{{x}^{2}+2{y}^{2}-2y+2=0}\\{{x}^{2}+2xy+{y}^{2}-x-y-2=0}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.(1)如图,△ABC中,∠C=90°,那么:①∠A+∠B=90°;②tanA•tanB的值为1;
(2)①tan40°•tan50°的值为1;②tan35°•tan45°•tan55°的值为1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图1,AB是半圆O的直径,且AB=4,点P(不与点A、B重合)为半圆上一点.将图形沿BP折叠,分别得到点A、O的对称点A′,O′.设∠ABP=α.
(1)当α=10°时,∠ABA′=20°,当点O′落在$\widehat{PB}$上时,α的度数为30°;
(2)如图2,当BA′与⊙O相切时,求折痕的长;
(3)若线段BO′与半圆只有一个公共点B,确定α的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.若|a-2|+b2+4b+4+$\sqrt{{c}^{2}-c+\frac{1}{4}}$=0,则$\sqrt{{b}^{2}}$•$\sqrt{a}$•$\sqrt{c}$的值是(  )
A.4B.2C.-2D.1

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.若$\sqrt{x-y-10}$+$\sqrt{10-x+y}$有意义,则x-y的值为10.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,抛物线y=ax2+bx+2(a≠0)与x轴交于A(4,0)、B(-1,0)两点,与y轴交于点C.
(1)求抛物线的解析式,并写出其对称轴;
(2)把(1)中所求出的抛物线记为C1,将C1向右平移m个单位得到抛物线C2,C1与C2的在第一象限交点为M,过点M作MG⊥x轴于点G,交线段AC于点H,连接CM,当△CMH为等腰三角形时,求抛物线向右平移的距离m和此时点M的坐标.

查看答案和解析>>

同步练习册答案