精英家教网 > 初中数学 > 题目详情
抛物线y=
1
2
x2+(k+
1
2
)x+(k+1)(k为常数)与x轴交于A(x1,0)、B(x2,0)(x1<0<x2)两点,与y轴交于C点,且满足(OA+OB)2=OC2+16.
(1)求此抛物线的解析式;
(2)设M、N是抛物线在x轴上方的两点,且到x轴的距离均为1,点P是抛物线的顶点,问:过M、N、C三点的圆与直线CP是否只有一个公共点C?试证明你的结论.
(1)∵(OA+OB)2=OC2+16,
∴(-x1+x22=OC2+16,
∴4(k+
1
2
2-4×2×(k+1)=(k+1)2+16,
解得k1=-2,k2=4.
∵x1<0<x2
∴x1•x2=2(k+1)<0,
即k<-1,
∴k=-2.
∴抛物线解析式为y=
1
2
x2-
3
2
x-1

(2)过M、N、C三点的圆与直线CP只有一个公共点C.证明如下:
如图,∵抛物线上的点M、N在x轴上方,且到x轴距离均为1,设MN交y轴于E,
则M(-1,1),N(4,1),且C(0,-1),P(
3
2
,-
17
8
),
在Rt△MEC中,MC2=5,同理NC2=20,
又∵MN2=25,MN2-MC2=NC2
∴∠MCN=90°.
故MN是过M、N、C三点的圆的直径,圆心D(
3
2
,1),
作CF⊥DP于F,连接CD,
则CFDE为矩形.
FD=CE=2,CF=ED=
3
2

又∵PF=
9
8

在Rt△CFP中,CP2=CF2+PF2=(
3
2
2+(
9
8
2=
225
64

在△CDP中,DP2-CD2=(
25
8
2-(
5
2
2=
225
64
=CP2
即CP2+CD2=DP2
∴CP⊥CD,直线CP与⊙D相切于点C,
故直线CP和过M、N、C三点的圆只有一个公共点C.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,抛物线y=ax2+bx+c的顶点M的坐标是(1,3),且与y轴相交于点C(0,2),P(1,1)是抛物线对称轴上的一点.请回答下列问题:
(1)写出抛物线的解析式______;
(2)点Q是抛物线上的一点,且使△CPQ的面积等于△CMP的面积,则所有满足条件的点Q的个数为:______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

嘉兴月河桥拱形可以近似看作抛物线的一部分.在大桥截面1:1000的比例图上,跨度AB=5cm,拱高OC=0.9cm,线段DE表示河流宽度,DEAB,如图(1)在比例图上,以直线AB为x轴,抛物线的对称轴为y轴,以1cm作为数轴的单位长度,建立平面直角坐标系,如图(2).

(1)求出图(2)上以这一部分抛物线为图象的函数解析式,并写出自变量的取值范围;
(2)如果DE与AB的距离OM=0.45cm,求河流宽度(备用数据:
2
≈1.4
,计算结果精确到1米).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=-x+3与x轴、y轴分别交于点B、C,抛物线y=-x2+bx+c经过点B、C,点A是抛物线与x轴的另一个交点.
(1)求抛物线的解析式;
(2)求△ABC的面积;
(3)若P是抛物线上一点,且S△ABP=
1
2
S△ABC,这样的点P有______个.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=ax2-4x+c的图象与x轴交于点A(-1,0)、点C,与y轴交于点B(0,-5).
(1)求该二次函数的解析式;
(2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐标,并求出△ABP周长的最小值;
(3)在线段AC上是否存在点E,使以C、P、E为顶点的三角形与三角形ABC相似?若存在写出所有点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在足球比赛中,当守门员远离球门时,进攻队员常常使用“吊射”的战术(把球高高地挑过守门员的头顶,射入球门).一位球员在离对方球门30米的M处起脚吊射,假如球飞行的路线是一条抛物线,在离球门14米时,足球达到最大高度
32
3
米.如图a:以球门底部为坐标原点建立坐标系,球门PQ的高度为2.44米.问:

(1)通过计算说明,球是否会进球门?
(2)如果守门员站在距离球门2米远处,而守门员跳起后最多能摸到2.75米高处,他能否在空中截住这次吊射?
(3)如图b:在另一次地面进攻中,假如守门员站在离球门中央2米远的A点处防守,进攻队员在离球门中央12米的B处以120千米/小时的球速起脚射门,射向球门的立柱C.球门的宽度CD为7.2米,而守门员防守的最远水平距离S和时间t之间的函数关系式为S=10t,问这次射门守门员能否挡住球?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.
(1)求线段OA所在直线的函数解析式;
(2)设抛物线顶点M的横坐标为m,请用含m的代数式表示点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=-
2
3
x2+bx+c
与x轴交于不同的两点A(x1,0)和B(x2,0),与y轴交于点C,且x1,x2是方程x2-2x-3=0的两个根(x1<x2).
(1)求抛物线的解析式;
(2)过点A作ADCB交抛物线于点D,求四边形ACBD的面积;
(3)如果P是线段AC上的一个动点(不与点A、C重合),过点P作平行于x轴的直线l交BC于点Q,那么在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=2x2+bx-2经过点A(1,0).
(1)求b的值;
(2)设P为此抛物线的顶点,B(a,0)(a≠1)为抛物线上的一点,Q是坐标平面内的点,若以A、B、P、Q为顶点的四边形为平行四边形,这样的Q点有几个,并求出PQ的长.

查看答案和解析>>

同步练习册答案