精英家教网 > 初中数学 > 题目详情

【题目】如图,将一块直角三角板OAB放在平面直角坐标系中,B(2,0),∠AOB=60°,点A在第一象限,过点A的双曲线为 .在x轴上取一点P,过点P作直线OA的垂线l,以直线l为对称轴,线段OB经轴对称变换后的像是O′B′.
(1)当点O′与点A重合时,点P的坐标是
(2)设P(t,0),当O′B′与双曲线有交点时,t的取值范围是

【答案】
(1)(4,0)
(2)4≤t≤2 或﹣2 ≤t≤﹣4
【解析】解:(1.)当点O′与点A重合时
∵∠AOB=60°,过点P作直线OA的垂线l,以直线l为对称轴,线段OB经轴对称变换后是O′B′.
AP=OP,
∴△AOP′是等边三角形,
∵B(2,0),
∴BO=BP′=2,
∴点P的坐标是(4,0),
故答案为:(4,0).
(2.)由(1)知,当P的坐标是(4,0)时,直线OB与双曲线有交点O′,
当B′在双曲线上时,作B′C⊥OP于C,

∵BP=B′P,∠B′BP=60°,
∴△BB′P是等边三角形,
∴BP=B′P=t﹣2,
∴CP= (t﹣2),B′C= (t﹣2),
∴OC=OP﹣CP= t+1,
∴B′的坐标是( t+1, (t﹣2)),
∵∠ABO=90°,∠AOB=60°,OB=2,
∴OA=4,AB=2
∴A(2,2 ),
∵A和B′都在双曲线上,
∴( t+1) (t﹣2))=2×2
解得:t=±2
∴t的取值范围是4≤t≤2 或﹣2 ≤t≤﹣4.
故答案为:4≤t≤2 或﹣2 ≤t≤﹣4.
(1)当点O′与点A重合时,即点O与点A重合,进一步解直角三角形AOB,利用轴对称的现在解答即可;(2)分别求出O′和B′在双曲线上时,P的坐标即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】把下列各数分别填入相应的集合里.

-4,,0,,-3.14,717,-(+5),+1.88,

(1)正数集合:{ … };

(2)负数集合:{ …};

(3)整数集合:{ …};

(4)分数集合:{ … }.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O在等边△ABC内,∠AOB=100°,∠BOC=x,将△BOC绕点C顺时针旋转60°,得△ADC,连接OD.

(1)△COD的形状是   

(2)当x=150°时,△AOD的形状是   ;此时若OB=3,OC=5,求OA的长;

(3)当x为多少度时,△AOD为等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列等式:(113×12×22;(213+23×22×32;(313+23+33×32×42;(413+23+33+43×42×52

根据上述等式的规律,解答下列问题:

1)写出第5个等式:_____

2)写出第n个等式(用含有n的代数式表示);

3)设s是正整数且s≥2,应用你发现的规律,化简:×s2×s+12×s12×s2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).

(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)

(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图BA1CA1分别是△ABC的内角平分线和外角平分线,BA2是∠A1BD的平分线,CA2是∠A1CD的平分线,BA3是∠A2BD的平分线,CA3是∠A2CD的平分线.若∠A1α,则∠A2019________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程: (1)x﹣3=-2x+1 (2)18(x-1)=-2(2x﹣1)(3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某个正方体的表面展开图,各个面上分别标有1﹣6的不同数字,若将其折叠成正方体,则相交于同一个顶点的三个面上的数字之和最大的是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知∠AOB=120°,COD=60°,OE平分∠BOC

(1)如图1.当∠COD在∠AOB的内部时

①若∠AOC=39°40′,求∠DOE的度数;

②若∠AOC=α,求∠DOE的度数(用含α的代数式表示),

(2)如图2,当∠COD在∠AOB的外部时,(1)中∠AOC与∠DOE的数量关系还成立吗?若成立,请推导出∠AOC与∠DOE的度数之间的关系;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案