精英家教网 > 初中数学 > 题目详情
如图,抛物线与x轴交于A、C两点,与y轴交于B点.

(1)求△AOB的外接圆的面积;
(2)若动点P从点A出发,以每秒1个单位沿射线AC方向运动;同时,点Q从点B出发,以每秒0.5个单位沿射线BA方向运动,当点P到达点C处时,两点同时停止运动.问当t为何值时,以A、P、Q为顶点的三角形与△OAB相似?
(3)若M为线段AB上一个动点,过点M作MN平行于y轴交抛物线于点N.
问:是否存在这样的点M,使得四边形OMNB恰为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
(1)25π;(2)t=以A、P、Q为顶点的三角形与△OAB相似;(3)不存在这样的点M,使得四边形OMNB恰为平行四边形,理由见解析.

试题分析:(1)先求出A,B坐标,则△AOB的外接圆的半径为AB,根据圆的面积公式求解即可;
(2)根据相似三角形对应边的比相等列出比例式,求解即可;
(3)若四边形OMNB为平行四边形,根据平行四边形的性质得出MN=OB=8,据此列出方程(x-8)-(x2x-8)=8,由判别式△<0即可判断出不存在这样的点M,使得四边形OMNB恰为平行四边形.
试题解析:(1)∵,
∴当y=0时,=0,解得x=6或﹣8,
∴A(6,0),B(0,-8)
∴OA=6,OB=8,∴AB=10
∴S=π·(5)2=25π.
(2)AP=t,AQ=10-0.5t,易求AC=8,∴0≤t≤8
若△APQ∽△AOB,则.∴t=
若△AQP∽△AOB,则.∴t=>8(舍去,).
∴当t=时,以A、P、Q为顶点的三角形与△OAB相似.
(3)直线AB的函数关系式为 .
∵MN∥y轴
∴设点M的横坐标为x,则M(x,x-8),N(x,x2x-8).
若四边形OMNB为平行四边形,则MN=OB=8
∴(x-8)-(x2x-8)=8
即x2-6x+12=0
∵△<0,∴此方程无实数根,
∴不存在这样的点M,使得四边形OMNB恰为平行四边形.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

抛物线过点(2,-2)和(-1,10),与x轴交于A、B两点,与y轴交于C点.
(1)求抛物线的解析式.
(2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数为常数,且.
(1)求证:不论为何值,该函数的图象与轴总有两个公共点;
(2)设该函数的图象的顶点为C,与轴交于A,B两点,当△ABC的面积等于2时,求的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,﹣3)

(1)求此二次函数的解析式;
(2)在抛物线上存在一点P使△ABP的面积为10,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:抛物线与x轴交于点A、B(A左B右),其中点B的坐标为(7,0),设抛物线的顶点为C.

(1)求抛物线的解析式和点C的坐标;
(2)如图1,若AC交y轴于点D,过D点作DE∥AB交BC于E.点P为DE上一动点,PF⊥AC于F,PG⊥BC于G.设点P的横坐标为a,四边形CFPG的面积为y,求y与a的函数关系式和y的最大值;
(3)如图2,在条件(2)下,过P作PH⊥x轴于点H,连结FH、GH,是否存在点P,使得△PFH与△PHG相似?若存在,求出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

二次函数的图象经过点
(1)求此二次函数的关系式;
(2)求此二次函数图象的顶点坐标;
(3)填空:把二次函数的图象沿坐标轴方向最少平移  个单位,使得该图象的顶点在原点.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,正三角形ABC的边长为3cm,动点P从点A出发,以每秒的速度,沿A→B→C的方向运动,到达点C时停止.设运动时间为(秒),=PC2,则关于的函数图象大致为(   )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=ax²+bx+c(a≠0)的图像如图所示,则下列结论中正确的是(  )
A.a>0B.3是方程ax²+bx+c=0的一个根
C.a+b+c=0D.当x<1时,y随x的增大而减小

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图为二次函数的图象,在下列说法中:①<0,②方程的两实根分别为,③>0,④当x>1时,y随x的增大而增大,其中正确的有:(    )
 
A.①②③ B.①②④ C.②③④ D.①③④

查看答案和解析>>

同步练习册答案