精英家教网 > 初中数学 > 题目详情
16.下列关于函数y=x2-6x+10的四个命题:
①当x=0时,y有最小值10;
②n为任意实数,x=3+n时的函数值大于x=3-n时的函数值;
③若n>3,且n是整数,当n≤x≤n+1时,y的整数值有(2n-4)个;
④若函数图象过点(a,y0)和(b,y0+1),其中a>0,b>0,则a<b.
其中真命题的序号是(  )
A.B.C.D.

分析 分别根据二次函数的图象与系数的关系、抛物线的顶点坐标公式及抛物线的增减性对各选项进行逐一分析.

解答 解:∵y=x2-6x+10=(x-3)2+1,
∴当x=3时,y有最小值1,故①错误;
当x=3+n时,y=(3+n)2-6(3+n)+10,
当x=3-n时,y=(n-3)2-6(n-3)+10,
∵(3+n)2-6(3+n)+10-[(n-3)2-6(n-3)+10]=0,
∴n为任意实数,x=3+n时的函数值等于x=3-n时的函数值,故②错误;
∵抛物线y=x2-6x+10的对称轴为x=3,a=1>0,
∴当x>3时,y随x的增大而增大,
当x=n+1时,y=(n+1)2-6(n+1)+10,
当x=n时,y=n2-6n+10,
(n+1)2-6(n+1)+10-[n2-6n+10]=2n-4,
∵n是整数,
∴2n-4是整数,故③正确;
∵抛物线y=x2-6x+10的对称轴为x=3,1>0,
∴当x>3时,y随x的增大而增大,x<0时,y随x的增大而减小,
∵y0+1>y0,∴当0<a<3,0<b<3时,a>b,当a>3,b>3时,a<b,当0<a<3,b>3时,a<b,当0<a<3,b>3时,a<b,故④是假命题.故选C.

点评 本题主要考查了二次函数的意义,性质,图象,能够根据二次函数的性质数形结合是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

6.在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,则A3表示的数是-5按照这种移动规律移动下去,第n次移动到点AN,如果点AN与原点的距离不小于20,那么n的最小值是13.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.计算:(-$\frac{1}{2}$)-1-|$\sqrt{3}-1$|+2sin60°+(π-4)0=0.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列运算中,结果正确的是(  )
A.(a32=a6B.(ab)3=a3bC.a•a3=a3D.a8÷a4=a2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?
经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.
小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.
(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.下列各式计算正确的是(  )
A.(b+2a)(2a-b)=b2-4a2B.2a3+a3=3a6C.a3•a=a4D.(-a2b)3=a6b3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,为了测量某条河的宽度,现在河边的一岸边任意取一点A,又在河的另一岸边去两点B、C测得∠α=30°,∠β=45°,量得BC长为100米.求河的宽度(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.下列计算结果正确的是(  )
A.8a-a=8B.a3•a2=a6C.(-a)4=a4D.(a-b)2=a2-b2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,AB是⊙O的直径,PA切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=10,∠P=30°,则AC的长度是(  )
A.$5\sqrt{3}$B.$5\sqrt{2}$C.5D.$\frac{5}{2}$

查看答案和解析>>

同步练习册答案