精英家教网 > 初中数学 > 题目详情
已知:把按如图(1)摆放(点与点重合),点)、在同一条直线上..如图(2),从图(1)的位置出发,以的速度沿匀速移动,在移动的同时,点的顶点出发,以2 cm/s的速度沿向点匀速移动.当的顶点移动到边上时,停止移动,点也随之停止移动.相交于点,连接,设移动时间为

(1)当为何值时,点在线段的垂直平分线上?
(2)连接,设四边形的面积为,求之间的函数关系式;是否存在某一时刻,使面积最小?若存在,求出的最小值;若不存在,说明理由.
(3)是否存在某一时刻,使三点在同一条直线上?若存在,求出此时的值;若不存在,说明理由.(图(3)供同学们做题使用)
(1)2s;(2)3s,cm2;(3)1s

试题分析:(1)根据垂直平分线的性质可得AP=AQ,根据三角形的内角和定理可求的∠EQC=45°,即可证得CE=CQ,由题意知:CE=t,BP=2t,则CQ=t,AQ=8-t,在Rt△ABC中,由勾股定理得:AB=10cm,AP=10-2 t,即可求得结果;
(2)过P作,交BE于M,在Rt△ABC和Rt△BPM中,由,可得PM=,由BC =" 6" cm,CE = t可得BE = 6-t,再根据三角形的面积公式及二次函数的性质求解即可;
(3)假设存在某一时刻t,使点P、Q、F三点在同一条直线上,过P作,交AC于N,证得△PAN ∽△BAC,根据相似三角形的性质可得,由NQ = AQ-AN可得NQ = 8-t-() = .证得△QCF∽△QNP,再根据相似三角形的性质求解即可.
(1)∵点A在线段PQ的垂直平分线上,
∴AP = AQ.
∵∠DEF = 45°,∠ACB = 90°,∠DEF+∠ACB+∠EQC = 180°,
∴∠EQC = 45°.
∴∠DEF =∠EQC. 
∴CE =" CQ."
由题意知:CE = t,BP ="2" t,
∴CQ = t.
∴AQ = 8-t.
在Rt△ABC中,由勾股定理得:AB =" 10" cm,AP = 10-2 t.
∴10-2 t = 8-t.
解得:t = 2.
答:当t =" 2" s时,点A在线段PQ的垂直平分线上;
(2)过P作,交BE于M,

.
在Rt△ABC和Rt△BPM中,
 .  
∴PM = .
∵BC =" 6" cm,CE = t, 
∴BE = 6-t.
∴y=S△ABC-S△BPE====

∴抛物线开口向上.
∴当t = 3时,y最小=
答:当t = 3s时,四边形APEC的面积最小,最小面积为cm2
(3)假设存在某一时刻t,使点P、Q、F三点在同一条直线上.
过P作,交AC于N

.

∴△PAN ∽△BAC.
.
.
.
∵NQ = AQ-AN,
∴NQ = 8-t-() =
∵∠ACB = 90°,B、C(E)、F在同一条直线上,
∴∠QCF = 90°,∠QCF = ∠PNQ.
∵∠FQC = ∠PQN,
∴△QCF∽△QNP .
 . 
 . 
   

解得t=1.
答:当t = 1s,点P、Q、F三点在同一条直线上.
点评:此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;
①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC.
其中正确的个数是

A.1         B.2        C.3        D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在四边形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=AB,点E、F分别为AB,AD的中点,则△AEF与多边形BCDFE的面积之比为
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则ΔCEF的周长等于
A.8B.9.5C.10D.11.5

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

命题“有两个角对应相等的两个三角形相似”的条件是               .

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在梯形ABCD中,AD∥BC,∠B=90°,AD=2cm,AB=8cm,E是AB上一点,连接DE、CE.若满足∠DEC=90°的点E有且只有一个,则BC=   cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB∥CD,AD和BC相交于点O,∠A=30°,∠COD=80°,则(    )
A.50°B.60°C.70°D.80°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如下左图,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD·AB.其中能够单独判定△ABC∽△ACD的条件个数为  

A.1              B.2                C.3                D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

△OAB的坐标分别为O(0, 0),A(0,4),B(3,0),以原点为位似中心,在第一象限将△OAB扩大,使变换得到的△OEF与△OAB对应边的比为2:1 ,

(1)画出△OEF;
(2)求四边形ABFE的面积.

查看答案和解析>>

同步练习册答案