精英家教网 > 初中数学 > 题目详情
11.已知PA,PB分别与⊙O相切于A,B两点
(1)如图①,点C在⊙O上,若∠C=55°,求∠P的大小
(2)如图②,BD是⊙O的直径,过点A作AC⊥BD于点E,若PB=AC,求∠P的大小.

分析 (1)连接OA、OB,如图1,利用切线的性质得∠OAP=∠OBP=90°,则根据四边形内角和得到∠P+∠AOB=180°,再根据圆周角定理得到∠AOB=2∠C=110°,从而得到∠P=70°;
(2)连接OA,如图2,先判断四边形ACBP为平行四边形,则∠P=∠C,然后利用∠P+∠AOB=180°,∠AOB=2∠C可计算出∠P的度数.

解答 解:(1)连接OA、OB,如图1,
∵PA,PB分别与⊙O相切于A,B两点,
∴OA⊥PA,OB⊥PB,
∴∠OAP=∠OBP=90°,
∴∠P+∠AOB=180°,
∵∠AOB=2∠C=2×55°=110°,
∴∠P=180°-110°=70°;

(2)连接OA,如图2,
∵AC⊥BD,PB⊥BD,
∴PB∥AC,
而PB=AC,
∴四边形ACBP为平行四边形,
∴∠P=∠C,
而∠P+∠AOB=180°,∠AOB=2∠C,
∴∠P+2∠P=180°,
∴∠P=60°.

点评 本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA,EC.

(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;
(2)如图2,若点P在线段AB的中点,连接AC,判断△ACE的形状,并说明理由;
(3)如图3,若点P在线段AB上,连接AC,当EP平分∠AEC时,设AB=a,BP=b,求a:b及∠AEC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.计算:
(1)$\frac{a-b}{a+b}•\frac{{a}^{4}-a^2b^2}{a^2-ab}$;                                                        
(2)$\frac{4x^2-4xy+y^2}{2x+y}÷(4x^2-y^2)$;
(3)$(\frac{y}{x})^3\\;•\\;\frac{1}{2y}$•$\frac{1}{2y}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如果把分式$\frac{3mn}{m-n}$中的m和n都扩大3倍,那么分式的值(  )
A.不变B.扩大3倍C.缩小3倍D.扩大9倍

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,⊙O的直径AB=4,∠BAC=30°,AC交⊙O于D,D是AC的中点.
(1)过点D作DE⊥BC,垂足为E,求证:直线DE是⊙O的切线;
(2)求弧BD与线段DE、BE围成的阴影面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.勾股定理被誉为“几何学的基石”,《周髀算经》记载商高(约公元前11世纪)答周公问,说:“勾广三,股修四,经隔五”,所在在我国又称为“商高定理”.这个定理在外国称“毕达哥拉斯定理”或“百牛定理”或“驴桥定理”,至今已有近500种证明方法.
      小颖同学学习完相关内容后,在学校图书馆查阅资料时发现,文艺复兴时期意大利的著名画家达•芬奇用一张纸板经过以下操作验证了勾股定理:

      第一步:在一张长方形的纸板上画两个边长分别为a,b的正方形ABOF和正方形CDEO,连接BC,EF得到以AD为对称轴的六边形ABCDEF,如图①;
       第二步:将长方形纸板沿AD折叠,沿四边形ABCD的边剪下六边形ABCDEF,再沿AD把剩余的纸板剪开,得到两张纸板Ⅰ,Ⅱ,如图②;
      第三步:将纸板Ⅱ上下翻折后与纸板Ⅰ拼成如图③的图形;
      第四步:比较图①,图③中的两个六边形ABCDEF和六边形A′B′C′D′E′F′,由它们的面积相等可得结论.
     阅读后,小颖发现,验证的关键是证明图③中的四边形B′C′E′F′是正方形,由此才能得出结论,请你证明四边形B′C′E′F′是正方形并验证OB2+OC2=BC2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,四边形ABCD是平行四边形,CD在y轴上,对角线AC,BD相交于点E,∠AEB=60°,AC=10,AD=7,反比例函数y=$\frac{x}{k}$经过?ABCD的顶点A,则k的值为15$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.十一点十分这一时刻,分针和时针的夹角是(  )
A.70°B.75°C.80°D.85°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点D,B为AO的中点,DC⊥DB交x轴于点C,E在y轴上,且OC=OE,经过B、E、C三点的抛物线与直线AD交于F、G两点,与其对称轴交于M点
(1)求经过B、E、C三点的抛物线的解析式;
(2)P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q.若以P、Q、M为顶点的三角形与△AOD相似,求出满足条件的点P的坐标;
(3)N是抛物线上一动点,在抛物线的对称轴上是否存在点H,使以C,D,N,H为顶点的四边形为平行四边形.若存在,求出满足条件的点H的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案