精英家教网 > 初中数学 > 题目详情
关于反比例函数y=下列说法不正确的是
[     ]
A.点(―2,―1)在它的图象上
B.它的图象在第一、三象限
C.当x>0时,y随x的增大而增大
D.当x<0时,y随x的增大而减少
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线y=x2+(k2-3k-4)x+2k与x轴从左至右交于A、B两点,且这两点关于原点对称.
(1)求k的值;
(2)在(1)的条件下,若反比例函数y=
1
x
的图象与抛物线y=x2+(k2-3k-4)x+2k从左至右交于Q、R、S三点,且Q的坐标(-1,-1),R的坐标(
1-
5
2
-
1+
5
2
),S的坐标(
1+
5
2
-
1+
5
2
),求四边形AQBS的面积;
(3)在(1)、(2)条件下,在轴下方抛物线y=x2+(k2-3k-4)x+2k上是否存在点P,使S△PAB=2S△RAB?若存在,求出P点坐标;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知x1,x2是关于x的方程x2-2x+k2-4k-1=0的两个实数根.
(1)若x1+2x2=3-
2
,求x1,x2及k的值;
(2)在(1)的条件下,求x13-3x12+2x1+x2的值.
(3)若以方程x2-2x+k2-4k-1=0的两个根为横坐标、纵坐标的点恰在反比例函数y=
m
x
的图象上,求满足条件的m的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次方程(a-1)x2+(2-3a)x+3=0.
(1)求证:当a取不等于1的实数时,此方程总有两个实数根;
(2)若m,n(m<n)是此方程的两根,并且
1
m
+
1
n
=
4
3
.直线l:y=mx+n交x轴于点A,交y轴于点B.坐标原点O关于直线l的对称点O′在反比例函数y=
k
x
的图象上,求反比例函数y=
k
x
的解析式;
(3)在(2)成立的条件下,将直线l绕点A逆时针旋转角θ(0°<θ<90°),得到直线l′,l′交y轴于点P,过点P作x轴的平行线,与上述反比例函数y=
k
x
的图象交于点Q,当四边形APQO′的面积为9-
3
3
2
时,求θ的值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

作一个图形关于一条直线的轴对称图形,再将这个轴对称图形沿着与这条直线平行的方向平移,我们把这样的图形变换叫做关于这条直线的滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1),结合轴对称和平移的有关性质,解答以下问题:精英家教网
(1)如图2,在关于直线l的滑动对称变换中,试证明:两个对应点A,A′的连线被直线l平分;
(2)若点P是正方形ABCD的边AD上的一点,点P关于对角线AC滑动对称变换的对应点P′也在正方形ABCD的边上,请仅用无刻度的直尺在图3中画出P′;
(3)定义:若点M到某条直线的距离为d,将这个点关于这条直线的对称点N沿着与这条直线平行的方向平移到点M′的距离为s,称[d,s]为点M与M′关于这条直线滑动对称变换的特征量.如图4,在平面直角坐标系xOy中,点B是反比例函数y=
3x
的图象在第一象限内的一个动点,点B关于y轴的对称点为C,将点C沿平行于y轴的方向向下平移到点B′.
①若点B(1,3)与B′关于y轴的滑动对称变换的特征量为[m,m+4],判断点B′是否在此函数的图象上,为什么?
②已知点B与B′关于y轴的滑动对称变换的特征量为[d,s],且不论点B如何运动,点B′也都在此函数的图象上,判断s与d是否存在函数关系?如果是,请写出s关于d的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于的一元二次方程

(1)求证:当a取不等于1的实数时,此方程总有两个实数根;

(2)若mn)是此方程的两根,并且.直线lx轴于点A,交y轴于点B.坐标原点O关于直线l的对称点在反比例函数的图象上,求反比例函数的解析式;

(3)在(2)成立的条件下,将直线l绕点A逆时针旋转角,得到直线y轴于点P,过点Px轴的平行线,与上述反比例函数的图象交于点Q,当四边形的面积为时,求的值.

 


查看答案和解析>>

同步练习册答案