分析 由题意可知,以地面为x轴,大门左边与地面的交点为原点建立平面直角坐标系,抛物线过A(0,0)、B(8,0)、(1、3)、(7、3),运用待定系数法求出解析式后,求函数值的最大值即可.
解答 解:以地面为x轴,大门左边与地面的交点为原点建立平面直角坐标系,
则抛物线过A(0,0)、B(8,0)、C(1、3)、D(7、3)四点,
设该抛物线解析式为:y=ax2+bx+c,
则$\left\{\begin{array}{l}{c=0}\\{64a+8b+c=0}\\{a+b+c=3}\end{array}\right.$,
解得:
$\left\{\begin{array}{l}{a=-\frac{3}{7}}\\{b=\frac{24}{7}}\end{array}\right.$.
函数解析式为:y=-$\frac{3}{7}$x2+$\frac{24}{7}$x.
当x=4时,可得y=-$\frac{48}{7}$+$\frac{96}{7}$=$\frac{48}{7}$≈6.9米.
故答案为:6.9 m.
点评 本题考查点的坐标的求法及二次函数的实际应用,关键是建立数学模型,借助二次函数解决实际问题,注意根据线段长度得出各点的坐标.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\widehat{AC}$ | B. | $\widehat{AD}$ | C. | $\widehat{ACD}$ | D. | $\widehat{ADB}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com