精英家教网 > 初中数学 > 题目详情

【题目】如图,在等腰中,,在中,交于点

1)如图1,若,求的长;

2)如图2延长线上一点,连接,若,求证:

【答案】14;(2)证明见解析

【解析】

1)如图1中,作FEBAE.在RtBEF中,求出BF=,然后利用锐角三角函数求解;

2)延长ACBD的延长线于H.只要证明BCH≌△ACFCDF≌△CDHAE垂直平分线段BD,即可解决问题;

1)解:如图1中,作FEBAE

CA=CB,∠C=90°

∴∠ABC=45°,∵∠BEF=90°

∴△BEF是等腰直角三角形,

BF=

BE=EF= BF×cos45°= 4

2)证明:如图2中,延长ACBD的延长线于H

∵∠BEF=ACF=90°,∠BFE=AFC

∴∠HBC=CAF,∵CB=CA,∠BCH=ACF

∴△BCH≌△ACF

AF=BHCF=CH

∵∠ACD=135°,∠ACB=90°

∴∠ECD=HCD=45°

CD=CD

∴△CDF≌△CDH

DF=DH

AB=ADAEBD

BE=ED

AE垂直平分线段BD

FB=FD=DH

AF=BH=BD+DH=BD+BF

∴即

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在如图所示的平面直角坐标系中,OA1B1是边长为2的等边三角形,作B2A2B1OA1B1关于点B1成中心对称,再作B2A3B3B2A2B1关于点B2成中心对称,如此作下去,则B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,函数y=(m为常数,m>1,x>0)的图象经过点P(m,1)Q(1,m),直线PQx轴,y轴分别交于C,D两点,点M(x,y)是该函数图象上的一个动点,过点M分别作x轴和y轴的垂线,垂足分别为A,B.

(1)求∠OCD的度数;

(2)当m=3,1<x<3时,存在点M使得OPM∽△OCP,求此时点M的坐标;

(3)当m=5时,矩形OAMBOPQ的重叠部分的面积能否等于4.1?请说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形纸片放入以所在直线为轴,边上一点为坐标原点的平面直角坐标系中,连结。将纸片沿折叠,点恰好落在边上点处,若,则点的坐标为________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=x2+bx图象的对称轴为直线x=1,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1≤x≤2的范围内有解,则t的取值范围是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2+bx+c的图象经过点A(﹣3,6),并与x轴交于点B(﹣1,0)和点C,与y轴交于点E,顶点为P,对称轴与x轴交于点D

Ⅰ)求这个二次函数的解析式;

Ⅱ)连接CP,DCP是什么特殊形状的三角形?并加以说明;

Ⅲ)点Q是第一象限的抛物线上一点,且满足∠QEO=BEO,求出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,斜边AB=5,而直角边BC,AC之长是一元二次方程x2-(2m-1)x+4(m-1)=0的两根,则m的值是(

A. 4 B. -1 C. 4-1 D. -41

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+mx+nx轴交于AB两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A10),C02).

1)求抛物线的表达式;

2)在抛物线的对称轴上是否存在点P,使PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;

3)点E时线段BC上的一个动点,过点Ex轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)解不等式3x5<2 (2 +3x),并把解集表示在数轴上.

2)求不等式组 的整数解.

查看答案和解析>>

同步练习册答案