精英家教网 > 初中数学 > 题目详情
19、如图,五边形ABCDE中,AB=AE,BC+DE=CD,∠BAE=∠BCD=120°,∠ABC+∠AED=180°,连接AD.求证:AD平分∠CDE.
分析:连接AC,将△ABC绕A点旋转120°到△AEF,由AB=AE,∠BAE=120°,得到AB与AE重合,并且AC=AF,又由∠ABC+∠AED=180°,得到∠AEF+∠AEF=180°,即D,E,F在一条直线上,而BC+DE=CD,得CD=DF,则易证△ACD≌△AFD,于是∠ADC=∠ADF.
解答:证明::如图,
连接AC,将△ABC绕A点旋转120°到△AEF,
∵AB=AE,∠BAE=120°,
∴AB与AE重合,并且AC=AF,
又∵∠ABC+∠AED=180°,
而∠ABC=∠AEF,
∵∠AEF+∠AED=180°,
∴D,E,F在一条直线上,
而BC=EF,BC+DE=CD,
∴CD=DF,
又∵AC=AF,
∴△ACD≌△AFD,
∴∠ADC=∠ADF,
即AD平分∠CDE.
点评:本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.同时考查了三角形全等的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD的长,宽分别为
3
2
和1,且OB=1,点E(
3
2
,2),连接AE,ED.
(1)求经过A,E,D三点的抛物线的表达式;
(2)若以原点为位似中心,将五边形AEDCB放大,使放大后的五边形的边长是原五边形对应边长的3倍,请在下图网格中画出放大后的五边形A′E′D′C′B′;
(3)经过A′,E′,D′三点的抛物线能否由(1)中的抛物线平移得到?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,四边形ABCD的内角和为2×180°=360°,五边形ABCDE的内角和为3×180°=540°,…由此可见n边形的内角和为
(n-2)×180
度,外角和是
360
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在?ABCD中,AB=6cm,AD=AC=5cm.点P由C出发沿CA方向匀速运动,速度为1cm/s;同时,线段EF由AB出发沿AD方向匀速运动,速度为1cm/s,交AC于Q,连接PE、PF.若设运动时间为t(s)(0<t<5).解答下列问题:精英家教网
(1)当t为何值时,PE∥CD?
(2)试判断三角形PEF形状,并请说明理由;
(3)当0<t<2.5时.
①在上述运动过程中,五边形ABFPE的面积是否为定值?如果是,求出五边形ABFPE的面积;如果不是,请说明理由;
②试求△PEQ的面积的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD的长、宽分别为3和2,OB=2,点E的坐标为(3,4)连接AE、ED.
(1)求经过A、E、D三点的抛物线的解析式.
(2)以原点为位似中心,将五边形ABCDE放大.
①若放大后的五边形的边长是原五边形对应边长的2倍,请在网格中画出放大后的五边形A2B2C2D2E2,并直接写出经过A2、D2、E2三点的抛物线的解析式:
 

②若放大后的五边形的边长是原五边形对应边长的k倍,请你直接写出经过Ak、Dk、Ek三点的抛物线的解析式:
 
(用含k的字母表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的内角和为2×180°=360°,五边形ABCDE的内角和为3×180°=540°,…由此可见:
(1)六边形的内角和为
720
720
度;
(2)n边形的内角和为
(n-2)×180
(n-2)×180
度.

查看答案和解析>>

同步练习册答案