【题目】计算:
(1)(﹣)(﹣)+|﹣1|+(3﹣π)0.
(2).
(3).
(4)(2+3)2019(2﹣3)2020﹣(3﹣2)2.
科目:初中数学 来源: 题型:
【题目】如图是规格为8×8的正方形网格,请在所给网格中按下列要求操作:
(1)在网格中建立平面直角坐标系,使A点坐标为(﹣2,4),B点坐标为(﹣4,2);
(2)在第二象限内的格点上画一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,则C点坐标是 ;
(3)求△ABC中BC边上的高长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知BC=EC,∠BCE=∠ACD,如果只添加一个条件,使△ABC ≌ △DEC,则添加的条件不能为( )
A. ∠B=∠E B. AC=DC C. ∠A=∠D D. AB=DE
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解学生的课外学习负担,即墨区某中学数学兴趣小组决定对本校学生每天的课外学习情况进行调查,他们随机抽取本校部分学生进行了问卷调查,并将调查结果分为A,B,C,D四个等级,列表如下:
等级 | A | B | C | D |
每天课外学习时间 |
根据调查结果绘制了如图所示的两幅不完整的统计图,请你根据图中信息解答下列问题:
本次抽样调查共抽取了多少名学生?其中学习时间在B等级的学生有多少人?
将条形统计图补充完整;
表示D等级的扇形圆心角的度数是多少?
该校共有2000名学生,每天课外学习时间在2小时以内的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:
情形展示:
情形一:如图,在中,沿等腰三角形ABC的顶角的平分线折叠,若点B与点C重合,则称是的“好角”,如图,在中,先沿的平分线折叠,剪掉重复部分,再将余下部分沿的平分线折叠,若点与点C重合,则称是的“好角”.
情形二:如图,在中,先沿的平分线折叠,剪掉重复部分,再将余下部分沿的平分线折叠,剪掉重复部分重复折叠n次,最终若点与点C重合,则称是的“好角”,探究发现:不妨设
如图,若是的“好角”,则与的数量关系是:______.
如图,若是的“好角”,则与的数量关系是:______.
如图,若是的“好角”,则与的数量关系是:______.
应用提升:
如果一个三角形的三个角分别为,,,我们发现和的两个角都是此三角形的“好角”;如果有一个三角形,它的三个角均是此三角形的“好角”,且已知最小的角是,求另外两个角的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点 C 为线段 AB 上一点,△ACM、△CBN 都是等边三角形,AN、MC 交于点 E,BM、CN 交于点 F
(1)说明 AN=MB 的理由
(2)△CEF 是什么三角形?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在平面直角坐标系中顶点为点M的抛物线是由抛物线向右平移1个单位得到的,它与y轴负半轴交于点A,点B在抛物线上,且横坐标为3.
写出以M为顶点的抛物线解析式.
连接AB,AM,BM,求;
点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为,当时,求点P坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)已知,求代数式的值.
(2)2018年6月武侯区某学校开展了主题为“阳光下成长,妙笔绘武侯”学生绘画书法作品比赛,要求参赛学生每人交一件作品. 现将从中挑选的40件参赛作品的成绩(单位:分)统计如下:
等级 | 成绩(用表示) | 频数 | 频率 |
|
| 0.2 | |
20 |
| ||
12 | 0.3 |
请根据上表提供的信息,解答下列问题:
①表中的值为 ,的值为 ;
②将本次获得等级的参赛作品依次用标签表示. 学校决定从中选取两件作品进行全校展示,所代表的作品必须参展,另一件作品从等级余下的作品中抽取,求展示作品刚好是的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com