证法一:连接EF交AD于G,
∵AD平分∠BAC,
∴∠EAD=∠FAD.
在Rt△ADE和Rt△ADF中
,
∴Rt△ADE≌Rt△ADF(AAS).
∴AE=AF(全等三角形对应边相等).
∴在△AGE和△AGF中,
.
∴△AGE≌△AGF(SAS).
∴∠AGE=∠AGF,EG=FG.
又∵∠AGE+∠AGF=180°,
∴∠AGE=∠AGF=90°.
∴AD垂直平分EF.
∴E,F关于AD对称(如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称).
证法二:连接EF交AD于G,
∵AD平分∠BAC,
∴∠EAD=∠FAD.
在Rt△ADE和Rt△ADF中
,
∴Rt△ADE≌Rt△ADF(AAS).
∴AE=AF(全等三角形对应边相等).
∴AD垂直平分EF(三线合一).
∴E,F关于AD对称(如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称).
分析:先证明Rt△ADE≌Rt△ADF,再证明△AGE≌△AGF,所以AD垂直平分EF,∴E,F关于AD对称(如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称).
点评:要想证明其对称,就要证明那两条线段相等,且与AD垂直.