精英家教网 > 初中数学 > 题目详情
已知抛物线y1=x2+2(1-m)x+n经过点(-1,3m+
1
2
).
(1)求n-m的值;
(2)若此抛物线的顶点为(p,q),用含m的式子分别表示p和q,并求q与p之间的函数关系式;
(3)若一次函数y2=-2mx-
1
8
,且对于任意的实数x,都有y1≥2y2,直接写出m的取值范围.
分析:(1)将点的坐标代入抛物线解析式中,整理后即可求出n-m的值;
(2)由(1)得到的n-m的值,用m表示出n,代入抛物线解析式,利用顶点坐标公式求出顶点坐标,表示出p与q,找出p与q的函数关系式即可;
(3)根据y1≥2y2列出不等式,整理后得到根的判别式小于等于0,即可求出m的范围.
解答:解:(1)∵抛物线y1=x2+2(1-m)x+n经过点(-1,3m+
1
2
),
∴3m+
1
2
=(-1)2+2(1-m)×(-1)+n=1-2+2m+n,
则n-m=
3
2


(2)∵n-m=
3
2
,即n=m+
3
2

∴y1=x2+2(1-m)x+m+
3
2

∴p=-
b
2a
=m-1,
将p=m-1代入得:q=-m2+3m+
1
2

∵m=p+1,
∴q=-(p+1)2+3(p+1)+
1
2

则q=-p2+p+
5
2


(3)∵y1=x2+2(1-m)x+m+
3
2
,y2=-2mx-
1
8

∴代入y1≥2y2,得:x2+2(1-m)x+m+
3
2
≥2(-2mx-
1
8
),
整理得:x2+2(1+m)x+m+
7
4
≥0,
由题意得到:△=4(1+m)2-4(m+
7
4
)=4m2+4m-3≤0,
即(2m-1)(2m+3)≤0,
解得:-
3
2
≤m≤
1
2

当m=0时,经检验不满足题意,
则m的范围为-
3
2
≤m≤
1
2
且m≠0.
点评:此题考查了二次函数综合题,涉及的知识有:二次函数的图象与性质,根的判别式,不等式的解法,顶点坐标公式,利用了消元及函数的思想,熟练掌握二次函数的图象与性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线y1=x2-2x+c的部分图象如图1所示.
(1)求c的取值范围;
(2)若抛物线经过点(0,-1),试确定抛物线y1=x2-2x+c的解析式;
(3)若反比例函数y2=
kx
的图象经过(2)中抛物线上点(1,a),试在图2所示直角坐标系中,画出该反比例函数及(2)中抛物线的图象,并利用图象比较y1与y2精英家教网大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:已知抛物线y1=-x2-2x+8的图象交x轴于点A,B两点,与y轴的正半轴交于点C.抛物线y2经过B、C两点且对称轴为直线x=3.
(1)确定A、B、C三点的坐标;
(2)求抛物线y2的解析式;
(3)若过点(0,3)且平行于x轴的直线与抛物线y2交于M、N两点,以MN为一边,抛物线y2上任意一点P(x,y)为顶点作平行四边形,若平行四边形的面积为S,写出S关于P点纵坐标y的函数解析式.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

9、已知抛物线y1=x2-2x+c的部分图象如图所示,则系数c的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y1=x2+4x+1的图象向上平移m个单位(m>0)得到的新抛物线过点(1,8).
(1)求m的值,并将平移后的抛物线解析式写成y2=a(x-h)2+k的形式;
(2)将平移后的抛物线在x轴下方的部分沿x轴翻折到x轴上方,与平移后的抛物线没有变化的部分构成一个新的图象.请写出这个图象对应的函数y的解析式,并在所给的平面直角坐标系中直接画出简图,同时写出该函数在-3<x≤-
32
时对应的函数值y的取值范围;
(3)设一次函数y3=nx+3(n≠0),问是否存在正整数n使得(2)中函精英家教网数的函数值y=y3时,对应的x的值为-1<x<0?若存在,求出n的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•集美区一模)已知抛物线y1=-x2+bx+c(b≠0)与x轴正半轴交于A(c,0),与y轴交于B点,直线AB的解析式为y2=mx+n.
(1)求m-n+b的值;
(2)若抛物线顶点P关于y轴的对称点恰好在直线AB上,M是线段BA上的点,过点M作MN∥y轴交抛物线于点N.试问:当点M从点B运动到点A时,线段MN的长度如何变化?

查看答案和解析>>

同步练习册答案