精英家教网 > 初中数学 > 题目详情
精英家教网如图,一次函数y=kx+b的图象经过第一、二、三象限,且与反比例函数图象相交于A,B两点,与y轴交于点C,与x轴交于点D,OB=
5
.且点B横坐标是点B纵坐标的2倍.
(1)求反比例函数的解析式;
(2)设点A横坐标为m,△ABO面积为S,求S与m的函数关系式,并求出自变量的取值范围.
分析:(1)根据点B的横坐标是点B的纵坐标的2倍,且OB=
5
,结合勾股定理,即可求出B点的坐标,从而求出反比例解析式;
(2)在(1)的基础上,当A点的横坐标已知的情况下,A点的纵坐标也可求出,把A、B的坐标代入一次函数解析式中,利用待定系数法,可求出解析式,从而可求出直线与坐标轴的交点.
再进一步利用求和的方法,求三角形ABO的面积时,可列出等量关系,从而得出函数解析式.
解答:解:(1)设点B的纵坐标为t,则点B的横坐标为2t.
根据题意,得(2t)2+t2=(
5
2
∵t<0,精英家教网
∴t=-1.
∴点B的坐标为(-2,-1).
设反比例函数为y=
k1
x
,得
k1=(-2)×(-1)=2,
∴反比例函数解析式为y=
2
x


(2)设点A的坐标为(m,
2
m
).
根据直线AB为y=kx+b,可以把点A,B的坐标代入,
-2k+b=-1
mk+b=
2
m
,解得
k=
1
m
b=
2-m
m

∴直线AB为y=
1
m
x+
2-m
m

当y=0时,
1
m
x+
2-m
m
=0,
∴x=m-2,
∴点D坐标为(m-2,0).
∵S△ABO=S△AOD+S△BOD
∴S=
1
2
×|m-2|×|
2
m
|
+
1
2
×|m-2|×1,
∵m-2<0,
2
m
>0,
∴S=
2-m
m
+
2-m
2

∴S=
4-m2
2m

且自变量m的取值范围是0<m<2.
点评:此题考查了勾股定理、待定系数法以及数形结合思想,难易程度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,一次函数y=kx+2的图象与反比例函数y=
m
x
的图象交于点P,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,
OC
OA
=
1
2

(1)求点D的坐标;
(2)求一次函数与反比例函数的解析式;
(3)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,一次函数y1=-x-1与反比例函数y2=-
2
x
图象相交于点A(-2,1)、B(1,-2),则使y1>y2的x的取值范围是(  )
A、x>1
B、x<-2或0<x<1
C、-2<x<1
D、-2<x<0或x>1

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,一次函数y=kx+b(k<0)的图象经过点A.当y<3时,x的取值范围是
x>2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•成都)如图,一次函数y1=x+1的图象与反比例函数y2=
kx
(k为常数,且k≠0)的图象都经过点
A(m,2)
(1)求点A的坐标及反比例函数的表达式;
(2)结合图象直接比较:当x>0时,y1和y2的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数y=x+3的图象与x轴、y轴分别交于点A、点B,与反比例函数y=
4x
(x>0)
的图象交于点C,CD⊥x轴于点D,求四边形OBCD的面积.

查看答案和解析>>

同步练习册答案