【题目】如图,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则下列结论:
①△ODC是等边三角形 ②BC=2AB ③∠AOE=135° ④S△AOE=S△COE
A.1
B.2
C.3
D.4
【答案】C
【解析】解:∵矩形ABCD中,AE平分∠BAD,
∴∠BAE=45°,
∵∠CAE=15°,
∴∠BAO=∠BAE+∠CAE=45°+15°=60°,
又∵矩形中OA=OB=OC=OD,
∴△AOB是等边三角形,
∴∠AOB=∠COD=60°,
∴△ODC是等边三角形,故①正确;
由等边三角形的性质,AB=OA,
∴AC=2AB,
由垂线段最短BC<AC,
∴BC<2AB,故②错误;
∵∠BAE=45°,∠ABE=90°,
∴△ABE是等腰直角三角形,
∴AB=BE,
∴BO=BE,
∵∠COB=180°-60°=120°,
∴∠OBC=30°,∠BOE= (180°-30°)=75°,
∴∠AOE=∠AOB+∠BOE=60°+75°=135°,故③正确;
∵△AOE和△COE的底边AO=CO,点E到AC的距离相等,
∴S△AOE=S△COE , 故④正确;
综上所述,正确的结论是①③④.
故选:C.
科目:初中数学 来源: 题型:
【题目】某公司投资建了一商场,共有商铺30间,据预测,当每间租金定为10万元,可全部租出,每间的年租金每增加5000元,少租出商铺1间,该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.
(1)当每间商铺的年租金为l3万元时,能租出多少间?
(2)若从减少空铺的角度来看,当每间商铺的年租金为多少万元时,该公司的年收益为275万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】相传古印度一座梵塔圣殿中,铸有一片巨大的黄铜板,之上树立了三米高的宝石柱,其中一根宝石柱上插有中心有孔的64枚大小两两相异的一寸厚的金盘,小盘压着较大的盘子,如图,把这些金盘全部一个一个地从1柱移到3柱上去,移动过程不许以大盘压小盘,不得把盘子放到柱子之外.移动之日,喜马拉雅山将变成一座金山.
设h(n)是把n个盘子从1柱移到3柱过程中移动盘子之最少次数
n=1时,h(1)=1;
n=2时,小盘→2柱,大盘→3柱,小盘从2柱→3柱,完成.即h(2)=3;
n=3时,小盘→3柱,中盘→2柱,小盘从3柱→2柱.[即用h(2)种方法把中、小两盘移到2柱,大盘3柱;再用h(2)种方法把中、小两盘从2柱3柱,完成;
我们没有时间去移64个盘子,但你可由以上移动过程的规律,计算n=6时,h(6)=( )
A.11
B.31
C.63
D.127
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AB为⊙O直径,以OA为直径作⊙M.过B作⊙M得切线BC,切点为C,交⊙O于E.
(1)在图中过点B作⊙M作另一条切线BD,切点为点D(用尺规作图,保留作图痕迹,不写作法,不用证明);
(2)证明:∠EAC=∠OCB;
(3)若AB=4,在图2中过O作OP⊥AB交⊙O于P,交⊙M的切线BD于N,求BN的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,C的内接△AOB中,AB=AO=4,tan∠AOB= ,抛物线y=ax2+bx经过点A(4,0)与点(-2,6).
(1)求抛物线的函数解析式;
(2)直线m与C相切于点A,交y轴于点D,求证:AD//OB;
(3)在(2)的条件下,点P在线段OB上,从点O出发向点B运动;同时动点Q在线段DA上,从点D出发向点A运动;点P的速度为每秒1个单位长,点Q的速度为每秒2个单位长,当PQ⊥AD时,求运动时间t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,OA,OB是⊙O的两条半径,OA⊥OB,C是半径OB上一动点,连结AC并延长交⊙O于D,过点D作圆的切线交OB的延长线于E,已知OA=8.
(1)求证:∠ECD=∠EDC;
(2)若tanA= ,求DE长;
(3)当∠A从15°增大到30°的过程中,求弦AD在圆内扫过的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.
(1)求证:△ADE∽△ABC;
(2)若AD=3,AB=5,求 的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据: ≈1.414, ≈1.732)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com