精英家教网 > 初中数学 > 题目详情
某运输部门规定:办理托运,当一件物品的重量不超过16千克时,需付基础费30元和保险费3元;为限制过重物品的托运,当一件物品的重量超过16千克时,除了付基础费和保险费外,超过部分每千克还需付3元超重费.在托运的50千克物品可拆分(按整数千克拆分)的情况下,使托运费用最省的拆分方案是
把托运的50千克物品可拆分成三部分,16千克,16千克与18千克时所花运费最少.
把托运的50千克物品可拆分成三部分,16千克,16千克与18千克时所花运费最少.
分析:首先根据题意可以得到16千克物品的花费是30+3=33元,然后把50千克物品分成两份,三分,四份分别计算花费,比比那种情况花费少即可.
解答:解:①整体托运50千克物品,所花运费:30+3+(50-16)×3=135(元)
②把托运的50千克物品可拆分成两部分,16千克与34千克,则所花运费:
16千克的运费:30+3=33(元)
34千克所花运费:33+(34-16)×3=87(元)
总共花运费为:33+87=120(元)
③把托运的50千克物品可拆分成三部分,16千克,16千克与18千克,则所花运费:
16千克的运费:30+3=33(元)
18千克所花运费:33+(18-16)×3=42(元)
总共花运费为:33+33+42=108(元)
④把托运的50千克物品可拆分成四部分,16千克,16千克,16千克与2千克,则所花运费:
16千克的运费:30+3=33(元)
总共花运费为:33×4=132(元)
综上:把托运的50千克物品可拆分成三部分,16千克,16千克与18千克时所花运费最少.
点评:此题主要考查了数学中的分类讨论思想与实际生活的联系,题目比较简单,注意考虑分类讨论是要全面.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某运输部门规定:办理托运,当一种物品的重量不超过16千克时,需付基础费30元和保险费a元:为限制过重物品的托运,当一件物品超过16千克时,除了付以上基础费和保险费外,超过部分每千克还需付b元超重费.设某件物品的重量为x千克.
(1)当x≤16时,支付费用为
 
元(用含a的代数式表示);
当x≥16时,支付费用为
 
元(用含x和a、b的代数式表示);
(2)甲、乙两人各托运一件物品,物品重量和支付费用如下表所示:
物品重量(千克) 支付费用(元)
18 38
25 53
①试根据以上提供的信息确定a,b的值;
②试问在物品可拆分的情况下,用不超过105元的费用能否托运50千克物品?若能,请设计出其中一种托运方案,并求出托运费用;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

28、某运输部门规定:办理托运,当一件物品的重量不超过18千克时,需付基础费30元和保险费b元;为了限制过重物品的托运,当一件物品超过18千克时,除了付以上基础费和保险费外,超过部分还需每千克付c元的超重费.
物品重量(千克) 支付费用(元)
12 33
19 36
25 w
(1)由表格可知保险费b=
3
元;
(2)当重量超过18千克时,超重费每千克付费c=
3
元;
(3)求出当小明爸爸携带25千克的重物时,需要付基础费、保险费、超重费一共多少元.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、某运输部门规定:办理托运,当一件物品的重量不超过18千克时,需付基础费30元和保险费b元;为了限制过重物品的托运,当一件物品超过18千克时,除了付以上基础费和保险费外,超过部分还需每千克付c元的超重费.设某件物品的重量为x千克,支付费用为y元.
(1)当0<x≤18时,y=
30+b
(用式子表示);当x>18时,y=
30+b+(x-18)c
(用式子表示);
(2)甲、乙、丙三人各托运一件物品,物品的重量与支付费用如下表所示:
物品重量(千克) 支付费用(元)
12 33
19 36
25 w
根据以上提供的信息确定b、c的值,并计算出丙所支付费用w.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

先阅读下列一段文字,然后解答问题:
某运输部门规定:办理托运,当一种物品的重量不超过16千克时,需付基础费30元和保险费a元;为限制过重物品的托运,当一件物品超过16千克时,除了付以上基础费和保险费外,超过部分每千克还需付b元超重费.设某件物品的重量为x千克.
(1)当x≤16时,支付费用为
 
元(用含a的代数式表示);当x≥16时,支付费用为
 
元(用含x和a、b的代数式表示)
(2)甲、乙两人各托运一件物品,物品重量和支付费用如下表所示
物品重量(千克) 支付费用(元)
18 39
25 60
①试根据以上提供的信息确定a,b的值.
②试问在物品可拆分的情况下,用不超过120元的费用能否托运50千克物品?若能,请设计出其中一种托运方案,并求出托运费用;若不能,请说明理由.

查看答案和解析>>

同步练习册答案