精英家教网 > 初中数学 > 题目详情

【题目】已知:如图1,△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F.
(1)求证:直线EF是⊙O的切线;
(2)如图2,当直线AC与⊙O相切时,求⊙O的半径.

【答案】
(1)证明:连接OE.

∵△ABC是等边三角形∴∠B=∠C=60°;

又∵OB=OE∴∠OEB=∠B=∠C=60°;

∴OE∥AC;

∵EF⊥AC,

∴EF⊥OE

∴EF是⊙O的切线.


(2)设直线AC与⊙O相切于点G,连接OG,则OB=OG=r,OA=4﹣r

在Rt△AOG中,sinA=

=

解得:r=8 ﹣12.


【解析】(1)连接OE,只要证明OE⊥EF,只要证明OE∥AC即可解决问题.(2)设直线AC与⊙O相切于点G,连接OG,则OB=OG=r,OA=4﹣r,在Rt△AOG中,根据sinA= ,列出方程即可解决问题.
【考点精析】利用等边三角形的性质对题目进行判断即可得到答案,需要熟知等边三角形的三个角都相等并且每个角都是60°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(1)如图1,A(a,0)、B(b,0)且a、b满足|a+4|+=0

①求a、b的值;

②若C(﹣6,0),连CB,作BECB,垂足为B,且BC=BE,连AEy轴于P,求P点坐标;

(2)如图2,若A(6,0),B(0,3),点QA出发,以每秒1个单位的速度沿射线AO匀速运动,设点Q运动时间为t秒,过Q点作直线AB的垂线,垂足为D,直线QDy轴交于E点,在点Q的运动过程中,一定存在EOQ≌△AOB,请直接写出存在的t值以及相应的E点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市购进一批文具袋,每个进价为10元.试销售期间,记录的每天的销售数量与销售单价的数据如下表:

销售单价x(元

11

12

13

14

15

销售数量y(个)

38

36

34

32

30

备注:物价局规定,每个文具袋的售价不低于10元且不高于18元

请你根据表中信息解答下列问题:
(1)y是x的函数,其函数关系式为
(2)营业员发现有一天的利润是150元,则销售单价为元.
(3)试销售的目的是想要每天获得最大的销售利润.请你帮助销售经理计算一下,在这种情况下单价x(元)应定为多少时,每天的销售利润w(元)最大,最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在Rt△ABC中,∠B=90°,AC=100cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤25).过点DDF⊥BC于点F,连接DE,EF.

(1)求证:四边形AEFD是平行四边形;

(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;

(3)t为何值时,△DEF为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料.

点M,N在数轴上分别表示数m和n,我们把m,n之差的绝对值叫做点M,N之间的距离,即MN=|m﹣n|.如图,在数轴上,点A,B,O,C,D的位置如图所示,则DC=|3﹣1|=|2|=2;CO=|1﹣0|=|1|=1;BC=|(﹣2)﹣1|=|﹣3|=3;AB=|(﹣4)﹣(﹣2)|=|﹣2|=2.

(1)OA=  ,BD=  

(2)|1﹣(﹣4)|表示哪两点的距离?

(3)点P为数轴上一点,其表示的数为x,用含有x的式子表示BP=  ,当BP=4时,x=  ;当|x﹣3|+|x+2|的值最小时,x的取值范围是  

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知a,b,c为有理数,且它们在数轴上的位置如图所示.

(1)试判断a,b,c的正负性;

(2)根据数轴化简:

|a|=_____; |b|=_____:

|c|=_____; |-a|=_____;

|-b|=_____; |-c|=_____.

(3)|a|=5.5,|b|=2.5,|c|=5,求a,b,c的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】a1=22-02,a2=32-12,…,an=(n+1)2-(n-1)2(n为大于1的整数)

(1)计算a15的值;

(2)通过拼图你发现前三个图形的面积之和与第四个正方形的面积之间有什么关系:

__________________________________(用含a、b的式子表示);

(3)根据(2)中结论,探究an=(n+1)2-(n-1)2是否为4的倍数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点 的坐标为,以 A 为顶点的的两边始终与 轴交于 两点(左面),且

(1)如图,连接,当 时,试说明:

(2)过点 轴,垂足为,当时,将沿所在直线翻折,翻折后边轴于点 ,求点 的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先阅读下面的内容,再解决问题,

例题:若m2+2mn+2n2﹣6n+9=0,求mn的值.

解:∵m2+2mn+2n2﹣6n+9=0

m2+2mn+n2+n2﹣6n+9=0

m+n2+n﹣32=0

m+n=0n﹣3=0

m=﹣3n=3

问题(1)若x2+2y2﹣2xy+4y+4=0,求xy的值.

2)已知abcABC的三边长,满足a2+b2=10a+8b﹣41,且cABC中最长的边,求c的取值范围.

查看答案和解析>>

同步练习册答案