精英家教网 > 初中数学 > 题目详情
4.已知点A(2,5),B(8,2)及反比例函数y=$\frac{k}{x}$(k≠0)的图象与线段AB相交,过函数y=$\frac{k}{x}$上任意一点P,作PG⊥y轴于点G,O是坐标原点,则△OPG的面积S的取值范围是(  )
A.5≤S≤8B.5≤S≤9C.5≤S≤10D.S≤5或S≥8

分析 根据反比例函数 y=$\frac{k}{x}$中k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=$\frac{1}{2}$|k|.

解答 解:根据题意可得:∵A(2,5),B(8,2)两点,反比例函数y=$\frac{k}{x}$与线段MN相交,
∴k的范围是10≤k≤16;
∵△OGP面积S为$\frac{1}{2}$|k|;
∴△OGP面积S的取值范围是5≤S≤8.
故选A.

点评 本题主要考查了反比例函数 y=$\frac{k}{x}$中k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=$\frac{1}{2}$|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.计算题:$\sqrt{(-2)^{2}}$-$\root{3}{8}$+$\root{3}{-\frac{1}{27}}$+$\sqrt{1-\frac{8}{9}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,AD是⊙O的切线,切点为A,AB是⊙O的弦,过点B作BC∥AD,交⊙O于点C,连接AC,过点C作CD∥AB,交AD于点D,连接AO并延长AO交BC于点M,交$\widehat{BC}$于点E,交过点C的直线于点P,且∠BCP=∠ACD.
(1)求证:∠BAP=∠CAP;
(2)判断直线PC与⊙O的位置关系,并说明理由;
(3)若AB=9,BC=6,求PC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算:(x+3)(x-5)-x(x-2).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.实数a的相反数是(  )
A.aB.-aC.$\frac{1}{a}$D.|a|

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.阅读下面材料:
根据乘方的意义填空:
(1)①${2}^{2}×{2}^{3}=\underset{\underbrace{2×2}}{2个}\underset{\underbrace{×2×2×2}}{3个}=\underset{\underbrace{2×2×2×2×2}}{(2+3)个}={2}^{5}={2}^{(2+3)}$
一般地,${a}^{m}×{a}^{n}=\underset{\underbrace{a•a•a•…•a•}}{m个}\underset{\underbrace{a•a•a•…•a}}{n\;个}=\underset{\underbrace{a•a•a•…•a}}{(\;\;\;\;\;\;\;\;\;)个}={a}^{(\;\;\;\;\;\;)}$
②$({2}^{2})^{3}=\underset{\underbrace{{2}^{2}×{2}^{2}×{2}^{2}}}{3个}=\underset{\underbrace{(2×2)×(2×2)×(2×2)}}{3个}=\underset{\underbrace{2×2×2×2×2×2}}{2×3个}={2}^{6}={2}^{2×3}$
一般地,
$({a}^{m})^{n}=\underset{\underbrace{{a}^{m}•{a}^{m}•{a}^{m}•…•{a}^{m}}}{n个}=\underset{\underbrace{\underset{\underbrace{(a•a•a•…•a)}}{m个}\underset{\underbrace{(a•a•a•…•a)}}{m个}\underset{\underbrace{(a•a•a•…•a)•}}{m个}\underset{…\underbrace{•(a•a•a•…•a)}}{m个}}}{n个}{=\underset{\underbrace{a•a•a•…•a}}{(\;\;\;\;\;\;\;\;)个}=a}^{(\;\;\;\;\;\;)}$③${2}^{3}×(\frac{1}{2})^{3}=\underset{\underbrace{2×2×2}}{3个}\underset{×\underbrace{\frac{1}{2}×\frac{1}{2}×\frac{1}{2}}}{3个}=\underset{\underbrace{(2×\frac{1}{2})×(2×\frac{1}{2})×(2×\frac{1}{2})}}{3个}=(2×\frac{1}{2})^{3}$
一般地,${a}^{m}•{a}^{n}=\underset{\underbrace{(a•a•a•…•a)}}{m个}\underset{\underbrace{(b•b•b•…•b)}}{m个}=\underset{\underbrace{(ab)•(ab)•(ab)•…•(ab)}}{(\;\;\;\;\;\;\;\;\;\;\;)个}=(ab)^{(\;\;\;\;\;)}$
(2)根据上面的知识,计算:
①(-5)4×(-5)6                          
②${[{{{(-\frac{1}{2})}^4}}]^3}$
③(-0.125)99×8100

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.下列各式1)$\sqrt{\frac{1}{5}}$,2)$\sqrt{-5}$,3)-$\sqrt{{x}^{2}+2}$,4)$\sqrt{4}$,5)$\sqrt{(-\frac{1}{3})^{2}}$,6)$\sqrt{1-a}$,7)$\sqrt{{a}^{2}-2a+1}$,其中是二次根式的是1),3),4),5),7)(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.计算
(1)6$\sqrt{27}$×$(-2\sqrt{3})$;
(2)$\sqrt{6}$×$\sqrt{15}$×$\sqrt{10}$;
(3)$\sqrt{1\frac{2}{3}}$$÷\sqrt{2\frac{1}{3}}$×$\sqrt{1\frac{2}{5}}$;
(4)$\frac{\sqrt{3a}}{2b}$$•(\sqrt{\frac{b}{a}}÷2\sqrt{\frac{1}{b}})$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.下列说法错误的是(  )
A.-4是16的平方根B.17是(-17)2的算术平方根
C.$\frac{1}{64}$的算术平方根是$\frac{1}{8}$D.0.9的算术平方根0.03

查看答案和解析>>

同步练习册答案