【题目】已知直线与⊙O,AB是⊙O的直径,AD⊥于点D.
(1)如图①,当直线与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;
(2)如图②,当直线与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小.
【答案】(1)30°;(2)18°.
【解析】试题分析:(1)连接OD,易证OC∥AD,所以∠OCA=∠DAC,由因为OA=OC,所以∠OAC=∠OCA;
(2)连接BE,AB是⊙O的直径,所以∠AEB=90°,从而可知∠BEF=∠DAE=18°,由圆周角定理可知:∠BAF=∠BEF=18°
试题解析:(1)连接OC、
∵l是⊙O的切线,
∴OC⊥l,
∵AD⊥l,
∴OC∥AD,
∴∠OCA=∠DAC=30°,
∵OA=OC,
∴∠OAC=∠OCA=30°,
(2)连接BE,
∵AB是⊙O的直径,
∴∠AEB=90°,
∴∠AED+∠BEF=90°,
∵∠AED+∠DAE=90°,
∴∠BEF=∠DAE=18°,
∵,
∴∠BAF=∠BEF=18°
科目:初中数学 来源: 题型:
【题目】如图,8块相同的小长方形地砖拼成一个大长方形,
(1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答)
(2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有下列说法:()单项式的系数、次数都是;()多项式的系数是,它是三次二项式;()单项式与都是七次单项式;(4)单项式和的系数分别是或;()是二次单项式;()与都是整式,其中正确的说法有( ).
A.个B. C.个D.个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在锐角△ABC中,AB=5,tanC=3,BD⊥AC于点D,BD=3,点P从点A出发,以每秒1个单位长度的速度沿AB向终点B运动,过点P作PE∥AC交边BC于点E,以PE为边作Rt△PEF,使∠EPF=90°,点F在点P的下方,且EF∥AB.设△PEF与△ABD重叠部分图形的面积为S(平方单位)(S>0),点P的运动时间为t(秒)(t>0).
(1)求线段AC的长.
(2)当△PEF与△ABD重叠部分图形为四边形时,求S与t之间的函数关系式.
(3)若边EF与边AC交于点Q,连结PQ,如图②.
①当PQ将△PEF的面积分成1:2两部分时,求AP的长.
②直接写出PQ的垂直平分线经过△ABC的顶点时t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;
(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标;
(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个长为4cm,宽为3cm的长方形木板在桌面上做无滑动的翻滚(顺时针方向),木板点A位置的变化为A→Al→A2,其中第二次翻滚被面上一小木块挡住,使木板与桌面成30°的角,则点A滚到A2位置时共走过的路径长为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,过点A作⊙O的切线,交OC的延长线于点D,∠D=30°
(1)求∠B的度数;
(2)若OD⊥AB,BC=5,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数的图象过M(1,3),N(-2,12)两点.
(1)求函数的解析式;
(2)试判断点P(2a,-6a+8)是否在函数的图象上,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com